Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kendra C. Buresch is active.

Publication


Featured researches published by Kendra C. Buresch.


Philosophical Transactions of the Royal Society B | 2009

Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration

Roger T. Hanlon; Chuan-Chin Chiao; Lydia M. Mäthger; Alexandra Barbosa; Kendra C. Buresch; Charles Chubb

Individual cuttlefish, octopus and squid have the versatile capability to use body patterns for background matching and disruptive coloration. We define—qualitatively and quantitatively—the chief characteristics of the three major body pattern types used for camouflage by cephalopods: uniform and mottle patterns for background matching, and disruptive patterns that primarily enhance disruptiveness but aid background matching as well. There is great variation within each of the three body pattern types, but by defining their chief characteristics we lay the groundwork to test camouflage concepts by correlating background statistics with those of the body pattern. We describe at least three ways in which background matching can be achieved in cephalopods. Disruptive patterns in cuttlefish possess all four of the basic components of ‘disruptiveness’, supporting Cotts hypotheses, and we provide field examples of disruptive coloration in which the body pattern contrast exceeds that of the immediate surrounds. Based upon laboratory testing as well as thousands of images of camouflaged cephalopods in the field (a sample is provided on a web archive), we note that size, contrast and edges of background objects are key visual cues that guide cephalopod camouflage patterning. Mottle and disruptive patterns are frequently mixed, suggesting that background matching and disruptive mechanisms are often used in the same pattern.


Current Biology | 2011

Extreme aggression in male squid induced by a β-MSP-like pheromone.

Scott F. Cummins; Jean G. Boal; Kendra C. Buresch; Chitraporn Kuanpradit; Prasert Sobhon; Johanna B. Holm; Bernard M. Degnan; Gregg T. Nagle; Roger T. Hanlon

Male-male aggression is widespread in the animal kingdom and subserves many functions related to the acquisition or retention of resources such as shelter, food, and mates. These functions have been studied widely in the context of sexual selection, yet the proximate mechanisms that trigger or strengthen aggression are not well known for many taxa. Various external sensory cues (visual, audio, chemical) acting alone or in combination stimulate the complex behavioral interactions of fighting behaviors. Here we report the discovery of a 10 kDa protein, termed Loligo β-microseminoprotein (Loligo β-MSP), that immediately and dramatically changes the behavior of male squid from calm swimming and schooling to extreme fighting, even in the absence of females. Females synthesize Loligo β-MSP in their reproductive exocrine glands and embed the protein in the outer tunic of egg capsules, which are deposited on the open sea floor. Males are attracted to the eggs visually, but upon touching them and contacting Loligo β-MSP, they immediately escalate into intense physical fighting with any nearby males. Loligo β-MSP is a distant member of the chordate β-microseminoprotein family found in mammalian reproductive secretions, suggesting that this gene family may have taxonomically widespread roles in sexual competition.


Proceedings of the Royal Society of London B: Biological Sciences | 2010

Cuttlefish dynamic camouflage: responses to substrate choice and integration of multiple visual cues.

Justine J. Allen; Lydia M. Mäthger; Alexandra Barbosa; Kendra C. Buresch; Emilia Sogin; Jillian Schwartz; Charles Chubb; Roger T. Hanlon

Prey camouflage is an evolutionary response to predation pressure. Cephalopods have extensive camouflage capabilities and studying them can offer insight into effective camouflage design. Here, we examine whether cuttlefish, Sepia officinalis, show substrate or camouflage pattern preferences. In the first two experiments, cuttlefish were presented with a choice between different artificial substrates or between different natural substrates. First, the ability of cuttlefish to show substrate preference on artificial and natural substrates was established. Next, cuttlefish were offered substrates known to evoke three main camouflage body pattern types these animals show: Uniform or Mottle (function by background matching); or Disruptive. In a third experiment, cuttlefish were presented with conflicting visual cues on their left and right sides to assess their camouflage response. Given a choice between substrates they might encounter in nature, we found no strong substrate preference except when cuttlefish could bury themselves. Additionally, cuttlefish responded to conflicting visual cues with mixed body patterns in both the substrate preference and split substrate experiments. These results suggest that differences in energy costs for different camouflage body patterns may be minor and that pattern mixing and symmetry may play important roles in camouflage.


Journal of Chemical Ecology | 2003

CONTACT CHEMOSENSORY CUES IN EGG BUNDLES ELICIT MALE-MALE AGONISTIC CONFLICTS IN THE SQUID Loligo pealeii

Kendra C. Buresch; Jean G. Boal; Jamie Knowles; Jennifer Debose; Amy Nichols; Ali Erwin; Sherry D. Painter; Gregg T. Nagle; Roger T. Hanlon

Male Loligo pealeii engage in frequent agonistic bouts to gain access to female mates while aggregated at communal egg beds. Male squids are attracted to eggs in the field and in the laboratory. It was recently demonstrated that visual detection followed by physical contact with egg capsules elicited male–male aggression. We tested specific physical and chemical features of the egg capsules that may cause this strong behavioral reaction. Male squids were presented with either natural or artificial egg stimuli and scored for four selected behaviors (egg touch, egg blowing, forward-lunge grab, and fin-beating), the last two of which are highly aggressive behaviors. First, squids were presented with natural eggs versus eggs sealed in agarose-coated tubes (ESACT), which eliminated both tactile and chemical stimuli. Second, males were presented with natural eggs versus eggs sealed in agarose coated tubes containing C18 Sep-Pak-purified extracts (TCPE) from squid egg capsules, which provided chemical cues from natural eggs without the physical stimulus of the egg capsules. Third, natural eggs versus heat-denatured eggs were tested to determine whether the active factor in natural eggs is heat-labile. Squids responded aggressively when contacting natural eggs and TCPE, whereas squids did not respond after touching ESACT or denatured eggs. These results suggest that aggressive behavior is elicited by a heat-labile factor that is embedded within squid egg capsules. This chemosensory cue appears to be a contact pheromone that stimulates the agonistic interactions that characterize the mating behavior of migratory squids on inshore spawning grounds.


The Journal of Experimental Biology | 2010

Mottle camouflage patterns in cuttlefish: quantitative characterization and visual background stimuli that evoke them

Chuan-Chin Chiao; Charles Chubb; Kendra C. Buresch; Alexandra Barbosa; Justine J. Allen; Lydia M. Mäthger; Roger T. Hanlon

SUMMARY Cuttlefish and other cephalopods achieve dynamic background matching with two general classes of body patterns: uniform (or uniformly stippled) patterns and mottle patterns. Both pattern types have been described chiefly by the size scale and contrast of their skin components. Mottle body patterns in cephalopods have been characterized previously as small-to-moderate-scale light and dark skin patches (i.e. mottles) distributed somewhat evenly across the body surface. Here we move beyond this commonly accepted qualitative description by quantitatively measuring the scale and contrast of mottled skin components and relating these statistics to specific visual background stimuli (psychophysics approach) that evoke this type of background-matching pattern. Cuttlefish were tested on artificial and natural substrates to experimentally determine some primary visual background cues that evoke mottle patterns. Randomly distributed small-scale light and dark objects (or with some repetition of small-scale shapes/sizes) on a lighter substrate with moderate contrast are essential visual cues to elicit mottle camouflage patterns in cuttlefish. Lowering the mean luminance of the substrate without changing its spatial properties can modulate the mottle pattern toward disruptive patterns, which are of larger scale, different shape and higher contrast. Backgrounds throughout nature consist of a continuous range of spatial scales; backgrounds with medium-sized light/dark patches of moderate contrast are those in which cuttlefish Mottle patterns appear to be the most frequently observed.


Vision Research | 2011

The use of background matching vs. masquerade for camouflage in cuttlefish Sepia officinalis

Kendra C. Buresch; Lydia M. Mäthger; Justine J. Allen; Chelsea Bennice; Neal Smith; Jonathan Schram; Chuan-Chin Chiao; Charles Chubb; Roger T. Hanlon

Cuttlefish, Sepia officinalis, commonly use their visually-guided, rapid adaptive camouflage for multiple tactics to avoid detection or recognition by predators. Two common tactics are background matching and resembling an object (masquerade) in the immediate area. This laboratory study investigated whether cuttlefish preferentially camouflage themselves to resemble a three-dimensional (3D) object in the immediate visual field (via the mechanism of masquerade/deceptive resemblance) rather than the 2D benthic substrate surrounding them (via the mechanisms of background matching or disruptive coloration). Cuttlefish were presented with a combination of benthic substrates (natural rocks or artificial checkerboard and grey printouts) and 3D objects (natural rocks or cylinders with artificial checkerboards and grey printouts glued to the outside) with visual features known to elicit each of three camouflage body pattern types (Uniform, Mottle and Disruptive). Animals were tested for a preference to show a body pattern appropriate for the 3D object or the benthic substrate. Cuttlefish responded by masquerading as the 3D object, rather than resembling the benthic substrate, only when presented with a high-contrast object on a substrate of lower contrast. Contrast is, therefore, one important cue in the cuttlefishs preference to resemble 3D objects rather than the benthic substrate.


The Biological Bulletin | 2004

Experimental Evidence That Ovary and Oviducal Gland Extracts Influence Male Agonistic Behavior in Squids

Kendra C. Buresch; Jean G. Boal; Gregg T. Nagle; Jamie Knowles; Robert Nobuhara; Kate Sweeney; Roger T. Hanlon

Recent investigations of sensory and behavioral cues that initiate sexual selection processes in the squid Loligo pealeii have determined that egg capsules deposited on the substrate provide a strong visual and chemotactile stimulus to males, even in the absence of females (1, 2, 3). The visual stimulus of egg capsules attracts males to the eggs, and when the males touch the eggs, they encounter a chemical stimulus that leads to highly aggressive fighting behavior. We have recently demonstrated that egg capsule extracts implanted in artificial egg capsules elicit this aggressive behavior (4). In this communication, we present evidence that the salient chemical factor originates in the ovary and perhaps the oviducal gland of the female reproductive tract.


The Biological Bulletin | 2013

Defensive Responses of Cuttlefish to Different Teleost Predators

Michelle D. Staudinger; Kendra C. Buresch; Lydia M. Mäthger; Charlie Fry; Sarah McAnulty; Kimberly M. Ulmer; Roger T. Hanlon

We evaluated cuttlefish (Sepia officinalis) responses to three teleost predators: bluefish (Pomatomus saltatrix), summer flounder (Paralichthys dentatus), and black seabass (Centropristis striata). We hypothesized that the distinct body shapes, swimming behaviors, and predation tactics exhibited by the three fishes would elicit markedly different antipredator responses by cuttlefish. Over the course of 25 predator-prey behavioral trials, 3 primary and 15 secondary defense behaviors of cuttlefish were shown to predators. In contrast, secondary defenses were not shown during control trials in which predators were absent. With seabass—a benthic, sit-and-pursue predator—cuttlefish used flight and spent more time swimming in the water column than with other predators. With bluefish—an active, pelagic searching predator—cuttlefish remained closely associated with the substrate and relied more on cryptic behaviors. Startle (deimatic) displays were the most frequent secondary defense shown to seabass and bluefish, particularly the Dark eye ring and Deimatic spot displays. We were unable to evaluate secondary defenses by cuttlefish to flounder—a lie-and-wait predator—because flounder did not pursue cuttlefish or make attacks. Nonetheless, cuttlefish used primary defense during flounder trials, alternating between cryptic still and moving behaviors. Overall, our results suggest that cuttlefish may vary their behavior in the presence of different teleost predators: cryptic behaviors may be more important in the presence of active searching predators (e.g., bluefish), while conspicuous movements such as swimming in the water column and startle displays may be more prevalent with relatively sedentary, bottom-associated predators (e.g., seabass).


The Biological Bulletin | 2013

Vertical Visual Features Have a Strong Influence on Cuttlefish Camouflage

Kevin M. Ulmer; Kendra C. Buresch; M. M. Kossodo; Lydia M. Mäthger; Liese A. Siemann; Roger T. Hanlon

Cuttlefish and other cephalopods use visual cues from their surroundings to adaptively change their body pattern for camouflage. Numerous previous experiments have demonstrated the influence of two-dimensional (2D) substrates (e.g., sand and gravel habitats) on camouflage, yet many marine habitats have varied three-dimensional (3D) structures among which cuttlefish camouflage from predators, including benthic predators that view cuttlefish horizontally against such 3D backgrounds. We conducted laboratory experiments, using Sepia officinalis, to test the relative influence of horizontal versus vertical visual cues on cuttlefish camouflage: 2D patterns on benthic substrates were tested versus 2D wall patterns and 3D objects with patterns. Specifically, we investigated the influence of (i) quantity and (ii) placement of high-contrast elements on a 3D object or a 2D wall, as well as (iii) the diameter and (iv) number of 3D objects with high-contrast elements on cuttlefish body pattern expression. Additionally, we tested the influence of high-contrast visual stimuli covering the entire 2D benthic substrate versus the entire 2D wall. In all experiments, visual cues presented in the vertical plane evoked the strongest body pattern response in cuttlefish. These experiments support field observations that, in some marine habitats, cuttlefish will respond to vertically oriented background features even when the preponderance of visual information in their field of view seems to be from the 2D surrounding substrate. Such choices highlight the selective decision-making that occurs in cephalopods with their adaptive camouflage capability.


The Journal of Experimental Biology | 2010

Night vision by cuttlefish enables changeable camouflage.

Justine J. Allen; Lydia M. Mäthger; Kendra C. Buresch; Thomas Fetchko; Meg Gardner; Roger T. Hanlon

SUMMARY Because visual predation occurs day and night, many predators must have good night vision. Prey therefore exhibit antipredator behaviours in very dim light. In the field, the giant Australian cuttlefish (Sepia apama) assumes camouflaged body patterns at night, each tailored to its immediate environment. However, the question of whether cuttlefish have the perceptual capability to change their camouflage at night (as they do in day) has not been addressed. In this study, we: (1) monitored the camouflage patterns of Sepia officinalis during the transition from daytime to night-time using a natural daylight cycle and (2) tested whether cuttlefish on a particular artificial substrate change their camouflage body patterns when the substrate is changed under dim light (down to starlight, 0.003 lux) in a controlled light field in a dark room setting. We found that cuttlefish camouflage patterns are indeed adaptable at night: animals responded to a change in their visual environment with the appropriate body pattern change. Whether to deceive their prey or predators, cuttlefish use their excellent night vision to perform adaptive camouflage in dim light.

Collaboration


Dive into the Kendra C. Buresch's collaboration.

Top Co-Authors

Avatar

Roger T. Hanlon

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lydia M. Mäthger

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Charles Chubb

University of California

View shared research outputs
Top Co-Authors

Avatar

Chuan-Chin Chiao

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Justine J. Allen

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimberly M. Ulmer

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gregg T. Nagle

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Jean G. Boal

Millersville University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Liese A. Siemann

Marine Biological Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge