Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kendra K. McLauchlan is active.

Publication


Featured researches published by Kendra K. McLauchlan.


Ecology | 2005

LITTER QUALITY AND THE TEMPERATURE SENSITIVITY OF DECOMPOSITION

Noah Fierer; Joseph M. Craine; Kendra K. McLauchlan; Joshua P. Schimel

The temperature sensitivity of litter decomposition will influence the rates of ecosystem carbon sequestration in a warmer world. A number of studies have shown that the temperature sensitivity of litter decomposition can vary depending on litter type and extent of decomposition. However, the underlying causes of this variation are not well understood. According to fundamental principles of enzyme kinetics, the temperature sen- sitivity of microbial decomposition should be inversely related to litter carbon quality. We tested the accuracy of this hypothesis by adding ground plant shoot and root material to soils incubated under controlled conditions and measuring the temperature sensitivities of decomposition at three time points throughout a 53-d incubation. As the overall quality of the litter organic C declined, litter decomposition became more sensitive to temperature. This was true regardless of whether differences in C quality were due to inherent differences in litter chemistry or due to differences in the extent of decomposition. The same pattern was observed when specific C compounds of varying quality were added to soil, suggesting that substrate C quality has a significant and predictable influence on the temperature sensitivity of microbial decomposition.


New Phytologist | 2009

Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability.

Joseph M. Craine; Andrew J. Elmore; Marcos P. M. Aidar; Mercedes M. C. Bustamante; Todd E. Dawson; Erik A. Hobbie; Ansgar Kahmen; Michelle C. Mack; Kendra K. McLauchlan; Anders Michelsen; Gabriela Bielefeld Nardoto; Linda H. Pardo; Josep Peñuelas; Peter B. Reich; Edward A. G. Schuur; William D. Stock; Pamela H. Templer; Ross A. Virginia; Jeffrey M. Welker; Ian J. Wright

Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios (delta(15)N), foliar N concentrations, mycorrhizal type and climate for over 11,000 plants worldwide. Arbuscular mycorrhizal, ectomycorrhizal, and ericoid mycorrhizal plants were depleted in foliar delta(15)N by 2 per thousand, 3.2 per thousand, 5.9 per thousand, respectively, relative to nonmycorrhizal plants. Foliar delta(15)N increased with decreasing mean annual precipitation and with increasing mean annual temperature (MAT) across sites with MAT >or= -0.5 degrees C, but was invariant with MAT across sites with MAT < -0.5 degrees C. In independent landscape-level to regional-level studies, foliar delta(15)N increased with increasing N availability; at the global scale, foliar delta(15)N increased with increasing foliar N concentrations and decreasing foliar phosphorus (P) concentrations. Together, these results suggest that warm, dry ecosystems have the highest N availability, while plants with high N concentrations, on average, occupy sites with higher N availability than plants with low N concentrations. Global-scale comparisons of other components of the N cycle are still required for better mechanistic understanding of the determinants of variation in foliar delta(15)N and ultimately global patterns in N cycling.


Ecosystems | 2006

The Nature and Longevity of Agricultural Impacts on Soil Carbon and Nutrients: A Review

Kendra K. McLauchlan

Since the domestication of plant and animal species around 10,000 years ago, cultivation and animal husbandry have been major components of global change. Agricultural activities such as tillage, fertilization, and biomass alteration lead to fundamental changes in the pools and fluxes of carbon (C), nitrogen (N), and phosphorus (P) that originally existed in native ecosystems. Land is often taken out of agricultural production for economic, social, or biological reasons, and the ability to predict the biogeochemical trajectory of this land is important to our understanding of ecosystem development and our projections of food security for the future. Tillage generally decreases soil organic matter (SOM) due to erosion and disruption of the physical, biochemical, and chemical mechanisms of SOM stabilization, but SOM can generally reaccumulate after the cessation of cultivation. The use of organic amendments causes increases in SOM on agricultural fields that can last for centuries to millennia after the termination of applications, although the locations that provide the organic amendments are concurrently depleted. The legacy of agriculture is therefore highly variable on decadal to millennial time scales and depends on the specific management practices that are followed during the agricultural period. State factors such as climate and parent material (particularly clay content and mineralogy) modify ecosystem processes such that they may be useful predictors of rates of postagricultural biogeochemical change. In addition to accurate biogeochemical budgets of postagricultural systems, ecosystem models that more explicitly incorporate mechanisms of SOM loss and formation with agricultural practices will be helpful. Developing this predictive capacity will aid in ecological restoration efforts and improve the management of modern agroecosystems as demands on agriculture become more pressing.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Changes in nitrogen cycling during the past century in a northern hardwood forest.

Kendra K. McLauchlan; Joseph M. Craine; W. Wyatt Oswald; Peter R. Leavitt; Gene E. Likens

Nitrogen (N) availability, defined here as the supply of N to terrestrial plants and soil microorganisms relative to their N demands, limits the productivity of many temperate zone forests and in part determines ecosystem carbon (C) content. Despite multidecadal monitoring of N in streams, the long-term record of N availability in forests of the northeastern United States is largely unknown. Therefore, although these forests have been receiving anthropogenic N deposition for the past few decades, it is still uncertain whether terrestrial N availability has changed during this time and, subsequently, whether forest ecosystems have responded to increased N deposition. Here, we used stable N isotopes in tree rings and lake sediments to demonstrate that N availability in a northeastern forest has declined over the past 75 years, likely because of ecosystem recovery from Euro-American land use. Forest N availability has only recently returned to levels forecast from presettlement trajectories, rendering the trajectory of future forest N cycling uncertain. Our results suggest that chronic disturbances caused by humans, especially logging and agriculture, are major drivers of terrestrial N cycling in forest ecosystems today, even a century after cessation.


Nature | 2013

Changes in global nitrogen cycling during the Holocene epoch

Kendra K. McLauchlan; Joseph J. Williams; Joseph M. Craine; Elizabeth S. Jeffers

Human activities have doubled the pre-industrial supply of reactive nitrogen on Earth, and future rates of increase are expected to accelerate. Yet little is known about the capacity of the biosphere to buffer increased nitrogen influx. Past changes in global ecosystems following deglaciation at the end of the Pleistocene epoch provide an opportunity to understand better how nitrogen cycling in the terrestrial biosphere responded to changes in carbon cycling. We analysed published records of stable nitrogen isotopic values (δ15N) in sediments from 86 lakes on six continents. Here we show that the value of sedimentary δ15N declined from 15,000 years before present to 7,056 ± 597 years before present, a period of increasing atmospheric carbon dioxide concentrations and terrestrial carbon accumulation. Comparison of the nitrogen isotope record with concomitant carbon accumulation on land and nitrous oxide in the atmosphere suggests millennia of declining nitrogen availability in terrestrial ecosystems during the Pleistocene–Holocene transition around 11,000 years before present. In contrast, we do not observe a consistent change in global sedimentary δ15N values during the past 500 years, despite the potential effects of changing temperature and nitrogen influx from anthropogenic sources. We propose that the lack of a single response may indicate that modern increases in atmospheric carbon dioxide and net carbon sequestration in the biosphere have the potential to offset recent increased supplies of reactive nitrogen in some ecosystems.


Scientific Reports | 2015

Convergence of soil nitrogen isotopes across global climate gradients

Joseph M. Craine; Andrew J. Elmore; Lixin Wang; Laurent Augusto; W. Troy Baisden; E. N. J. Brookshire; Michael D. Cramer; Niles J. Hasselquist; Erik A. Hobbie; Ansgar Kahmen; Keisuke Koba; J. Marty Kranabetter; Michelle C. Mack; Erika Marin-Spiotta; Jordan R. Mayor; Kendra K. McLauchlan; Anders Michelsen; Gabriela Bielefeld Nardoto; Rafael S. Oliveira; Steven S. Perakis; Pablo Luis Peri; Carlos A. Quesada; Andreas Richter; Louis A. Schipper; Bryan A. Stevenson; Benjamin L. Turner; Ricardo Augusto Gorne Viani; Wolfgang Wanek; Bernd Zeller

Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.


New Phytologist | 2010

Thirteen decades of foliar isotopes indicate declining nitrogen availability in central North American grasslands

Kendra K. McLauchlan; Carolyn J. Ferguson; Iris E. Wilson; Troy W. Ocheltree; Joseph M. Craine

*Humans are increasing both the deposition of reactive nitrogen (N) and concentrations of atmospheric CO(2) on Earth, but the combined effects on terrestrial ecosystems are not clear. In the absence of historical records, it is difficult to know if N availability is currently increasing or decreasing on regional scales. *To determine the nature and timing of past changes in grassland ecosystem dynamics, we measured the composition of stable carbon (C) and N isotopes in leaf tissue from 545 herbarium specimens of 24 vascular plant species collected in Kansas, USA from 1876 to 2008. We also parameterized a simple model of the terrestrial N cycle coupled with a stable isotope simulator to constrain processes consistent with observed patterns. *A prolonged decline in foliar N concentrations began in 1926, while a prolonged decline in foliar delta(15)N values began in 1940. Changes in the difference between foliar and atmospheric C isotopes reveal slightly increased photosynthetic water use efficiency since 1876. *The declines in foliar N concentrations and foliar delta(15)N suggest declining N availability in these grasslands during the 20th century despite decades of anthropogenic N deposition. Our results are consistent with progressive-nitrogen-limitation-type hypotheses where declines in N availability are driven by increased ecosystem N storage as a result of increased atmospheric CO(2).


New Phytologist | 2014

Biogeochemical impacts of wildfires over four millennia in a Rocky Mountain subalpine watershed

Paul V. Dunnette; Philip E. Higuera; Kendra K. McLauchlan; Kelly M. Derr; Christy E. Briles; Margaret H. Keefe

Wildfires can significantly alter forest carbon (C) storage and nitrogen (N) availability, but the long-term biogeochemical legacy of wildfires is poorly understood. We obtained a lake-sediment record of fire and biogeochemistry from a subalpine forest in Colorado, USA, to examine the nature, magnitude, and duration of decadal-scale, fire-induced ecosystem change over the past c. 4250 yr. The high-resolution record contained 34 fires, including 13 high-severity events within the watershed. High-severity fires were followed by increased sedimentary N stable isotope ratios (δ15N) and bulk density, and decreased C and N concentrations--reflecting forest floor destruction, terrestrial C and N losses, and erosion. Sustained low sediment C : N c. 20-50 yr post-fire indicates reduced terrestrial organic matter subsidies to the lake. Low sedimentary δ15N c. 50-70 yr post-fire, coincident with C and N recovery, suggests diminishing terrestrial N availability during stand development. The magnitude of post-fire changes generally scaled directly with inferred fire severity. Our results support modern studies of forest successional C and N accumulation and indicate pronounced, long-lasting biogeochemical impacts of wildfires in subalpine forests. However, even repeated high-severity fires over millennia probably did not deplete C or N stocks, because centuries between high-severity fires allowed for sufficient biomass recovery.


Biogeochemistry | 2014

Reconstructing terrestrial nutrient cycling using stable nitrogen isotopes in wood

Laci M. Gerhart; Kendra K. McLauchlan

Although recent anthropogenic effects on the global nitrogen (N) cycle have been significant, the consequences of increased anthropogenic N on terrestrial ecosystems are unclear. Studies of the impact of increased reactive N on forest ecosystems—impacts on hydrologic and gaseous loss pathways, retention capacity, and even net primary productivity—have been particularly limited by a lack of long-term baseline biogeochemical data. Stable nitrogen isotope analysis (ratio of 15N to 14N, termed δ15N) of wood chronologies offers the potential to address changes in ecosystem N cycling on millennial timescales and across broad geographic regions. Currently, nearly 50 studies have been published utilizing wood δ15N records; however, there are significant differences in study design and data interpretation. Here, we identify four categories of wood δ15N studies, summarize the common themes and primary findings of each category, identify gaps in the spatial and temporal scope of current wood δ15N chronologies, and synthesize methodological frameworks for future research by presenting eight suggestions for common methodological approaches and enhanced integration across studies. Wood δ15N records have the potential to provide valuable information for interpreting modern biogeochemical cycling. This review serves to advance the utility of this technique for long-term biogeochemical reconstructions.


PLOS ONE | 2017

Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape

Bérangère Leys; Julie L. Commerford; Kendra K. McLauchlan

Fire is a key Earth system process, with 80% of annual fire activity taking place in grassland areas. However, past fire regimes in grassland systems have been difficult to quantify due to challenges in interpreting the charcoal signal in depositional environments. To improve reconstructions of grassland fire regimes, it is essential to assess two key traits: (1) charcoal count, and (2) charcoal shape. In this study, we quantified the number of charcoal pieces in 51 sediment samples of ponds in the Great Plains and tested its relevance as a proxy for the fire regime by examining 13 potential factors influencing charcoal count, including various fire regime components (e.g. the fire frequency, the area burned, and the fire season), vegetation cover and pollen assemblages, and climate variables. We also quantified the width to length (W:L) ratio of charcoal particles, to assess its utility as a proxy of fuel types in grassland environments by direct comparison with vegetation cover and pollen assemblages. Our first conclusion is that charcoal particles produced by grassland fires are smaller than those produced by forest fires. Thus, a mesh size of 120μm as used in forested environments is too large for grassland ecosystems. We recommend counting all charcoal particles over 60μm in grasslands and mixed grass-forest environments to increase the number of samples with useful data. Second, a W:L ratio of 0.5 or smaller appears to be an indicator for fuel types, when vegetation surrounding the site is before composed of at least 40% grassland vegetation. Third, the area burned within 1060m of the depositional environments explained both the count and the area of charcoal particles. Therefore, changes in charcoal count or charcoal area through time indicate a change in area burned. The fire regimes of grassland systems, including both human and climatic influences on fire behavior, can be characterized by long-term charcoal records.

Collaboration


Dive into the Kendra K. McLauchlan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bérangère Leys

École pratique des hautes études

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Elmore

University of Maryland Center for Environmental Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Myrbo

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noah Fierer

Institute of Arctic and Alpine Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge