Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip E. Higuera is active.

Publication


Featured researches published by Philip E. Higuera.


Ecological Monographs | 2009

Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska

Philip E. Higuera; Linda B. Brubaker; Patricia M. Anderson; Feng Sheng Hu; Thomas A. Brown

We examined direct and indirect impacts of millennial-scale climate change on fire regimes in the south-central Brooks Range, Alaska, USA, using four lake sediment records and existing paleoclimate interpretations. New techniques were introduced to identify charcoal peaks semi-objectively and to detect statistical differences between fire regimes. Peaks in charcoal accumulation rates provided estimates of fire return intervals (FRIs), which were compared among vegetation zones identified by fossil pollen and stomata. Climatic warming between ca. 15 000-9000 yr BP (calendar years before Common Era (CE) 1950) coincided with shifts in vegetation from herb tundra to shrub tundra to deciduous woodlands, all novel species assemblages relative to modern vegetation. Two sites cover this period and show decreased FRIs with the transition from herb to Betula-dominated shrub tundra ca. 13 300- 14 300 yr BP (FRImean ¼ 144 yr; 95% CI ¼ 120-169 yr), when climate warmed but remained cooler than present. Although warming would have favored shorter FRIs in the shrub tundra, the shift to more continuous, flammable fuels relative to herb tundra was probably a more important cause of increased burning. Similarly, a vegetation shift to Populus-dominated deciduous woodlands overrode the influence of warmer- and drier-than-present summers, resulting in lower fire activity from ca. 10 300-8250 yr BP (FRImean ¼ 251 yr; 95% CI ¼ 156- 347 yr). Three sites record the mid-to-late Holocene, when climatic cooling and moistening allowed Picea glauca forest-tundra and P. mariana boreal forests to establish ca. 8000 and 5500 yr BP, respectively. FRIs in forest-tundra were either similar to or shorter than those in the deciduous woodlands (FRImean range ¼ 131-238 yr). The addition of P. mariana ca. 5500 yr BP increased landscape flammability, overrode the effects of climatic cooling and moistening and resulted in lower FRIs (FRImean ¼ 145 yr; 95% CI ¼ 130-163). Overall, shifts in fire regimes were strongly linked to changes in vegetation, which were responding to millennial-scale climate change. We conclude that shifts in vegetation can amplify or override the direct influence of climate change on fire regimes, when vegetation shifts significantly modify landscape flammability. Our findings emphasize the importance of biophysical feedbacks between climate, fire, and vegetation in determining the response of ecosystems to past, and by inference, future climate change.


PLOS ONE | 2008

Frequent Fires in Ancient Shrub Tundra: Implications of Paleorecords for Arctic Environmental Change

Philip E. Higuera; Linda B. Brubaker; Patricia M. Anderson; Thomas A. Brown; Alison T. Kennedy; Feng Sheng Hu

Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birch-dominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/− 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleofires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as on land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years

Ryan Kelly; Melissa L. Chipman; Philip E. Higuera; Ivanka Stefanova; Linda B. Brubaker; Feng Sheng Hu

Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000–3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000–500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate–fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming.


International Journal of Wildland Fire | 2010

Peak detection in sediment-charcoal records: impacts of alternative data analysis methods on fire-history interpretations

Philip E. Higuera; Daniel G. Gavin; Patrick J. Bartlein; Douglas J. Hallett

Over the past several decades, high-resolution sediment-charcoal records have been increasingly used to reconstruct local fire history. Data analysis methods usually involve a decomposition that detrends a charcoal series and then applies a threshold value to isolate individual peaks, which are interpreted as fire episodes. Despite the proliferation of these studies, methods have evolved largely in the absence of a thorough statistical framework. We describe eight alternativedecompositionmodels(fourdetrendingmethodsusedwithtwothreshold-determinationmethods)andevaluate their sensitivity to a set of known parameters integrated into simulated charcoal records. Results indicate that the combination of a globally defined threshold with specific detrending methods can produce strongly biased results, depending on whether or not variance in a charcoal record is stationary through time. These biases are largely eliminated by using a locally defined threshold, which adapts to changes in variability throughout a charcoal record. Applying the alternative decomposition methods on three previously published charcoal records largely supports our conclusions from simulated records. We also present a minimum-count test for empirical records, which reduces the likelihood of false positives when charcoal counts are low. We conclude by discussing how to evaluate when peak detection methods are warranted with a given sediment-charcoal record.


The Open Ecology Journal | 2010

Paleoecological Perspectives on Fire Ecology: Revisiting the Fire-Regime Concept~!2009-09-02~!2009-11-09~!2010-03-05~!

Cathy Whitlock; Philip E. Higuera; David B. McWethy; Christy E. Briles

Fire is well recognized as a key Earth system process, but its causes and influences vary greatly across spatial and temporal scales. The controls of fire are often portrayed as a set of superimposed triangles, with processes ranging from oxygen to weather to climate, combustion to fuel to vegetation, and local to landscape to regional drivers over broadening spatial and lengthening temporal scale. Most ecological studies and fire management plans consider the effects of fire-weather and fuels on local to sub-regional scales and time frames of years to decades. Fire reconstructions developed from high-resolution tree-ring records and lake-sediment data that span centuries to millennia offer unique insights about fires role that cannot otherwise be obtained. Such records help disclose the historical range of variability in fire activity over the duration of a vegetation type; the role of large-scale changes of climate, such as seasonal changes in summer insolation; the consequences of major reorganizations in vegetation; and the influence of prehistoric human activity in different ecological settings. This paleoecological perspective suggests that fire-regime definitions, which focus on the characteristic frequency, size and intensity of fire and particular fuel types, should be reconceptualized to better include the controls of fire regimes over the duration of a particular biome. We suggest that approaches currently used to analyze fire regimes across multiple spatial scales should be employed to examine fire occurrence across multiple temporal scales. Such cross-scale patterns would better reveal the full variability of particular fire regimes and their controls, and provide relevant information for the types of fire regimes likely to occur in the future with projected climate and land-use change.


The Holocene | 2005

Reconstructing fire regimes with charcoal from small-hollow sediments: a calibration with tree-ring records of fire

Philip E. Higuera; Douglas G. Sprugel; Linda B. Brubaker

Interpretations of charcoal records from small hollows lack a strong theoretical and empirical foundation, and thus their potential for providing useful fire-history records is unclear. To evaluate this potential, we examined charcoal records in 210Pb-dated cores from 12 small hollows and looked for evidence of 20 local fires reconstructed with tree-ring records from the surrounding forest. Using all charcoal > 0.15 mm wide we established an optimum threshold that identified charcoal peaks corresponding to known fires while minimizing charcoal peaks identified that were not associated with known fires (i.e., false positives). This threshold detected four of four high-severity fires, five of 10 moderate-severity fires, and three of six low-severity fires. Analysis of larger charcoal alone (> 0.50 mm wide) yielded nearly identical temporal patterns and detection rates, but four false positives were identified, twice as many as identified using all charcoal >0.15 mm wide. Charcoal peak magnitude was highly variable within severity classes: although half of the low-and moderate-severity fires left no detectable peaks, others left peaks larger than some high-severity fires. Our results suggest that fire detection depends strongly on fire severity and that fine-scale spatial patterns of lower-severity burns play an important role in determining the charcoal signature of these events. High detection rates for high-severity fires and low false-positive rates indicate that charcoal records from small hollows will be most useful in systems where fires are large, severe and infrequent.


The Holocene | 2011

Linking tree-ring and sediment-charcoal records to reconstruct fire occurrence and area burned in subalpine forests of Yellowstone National Park, USA

Philip E. Higuera; Cathy Whitlock; Josh A. Gage

Reconstructing specific fire-history metrics with charcoal records has been difficult, in part because calibration data sets are rare. We calibrated charcoal accumulation in sediments from three medium (14—19 ha) and one large (4250 ha) lake with a 300 yr tree-ring-based fire-history reconstruction from central Yellowstone National Park (YNP) to reconstruct local fire occurrence and area burned within a 128 840 ha study area. Charcoal peaks most accurately reflected fires within 1.2—3.0 km of coring sites, whereas total charcoal accumulation correlated best with area burned within 6.0—51 km (r 2=0.22—0.62, p<0.05). To reconstruct area burned for the entire study area, we developed a statistical model based on a composite charcoal record. The model explained 64—79% of the variability in area burned from AD 1675 to 1960 and was robust to cross-validation. Reconstructed area burned from AD 1240—1975 was significantly higher during periods including extreme annual drought ( p=0.05), and area burned varied significantly at ~ 60 yr timescales ( p<0.05), similar to the variability in an independent precipitation reconstruction covering the same period. Widespread burning (>10 000 ha) occurred at 150—300 yr intervals, and at the site level, fire probability increased with stand age (composite Weibull c parameter = 1.61 [95% CI 1.36—2.54]), both suggesting that post-fire stand development played an important intermediary role between climate and fire by increasing fuel abundance and probability of fire spread. Our study illustrates the possibility of reconstructing area burned with multiple charcoal records, and results imply that future fire regimes in YNP will be governed by direct impacts of altered moisture regimes and by vegetation dynamics affecting the abundance and continuity of fuels.


Environmental Research Letters | 2016

Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

Benjamin W. Abbott; Jeremy B. Jones; Edward A. G. Schuur; F. Stuart Chapin; William B. Bowden; M. Syndonia Bret-Harte; Howard E. Epstein; Mike D. Flannigan; Tamara K. Harms; Teresa N. Hollingsworth; Michelle C. Mack; A. David McGuire; Susan M. Natali; Adrian V. Rocha; Suzanne E. Tank; Merritt R. Turetsky; Jorien E. Vonk; Kimberly P. Wickland; George R. Aiken; Heather D. Alexander; Rainer M. W. Amon; Brian W. Benscoter; Yves Bergeron; Kevin Bishop; Olivier Blarquez; Ben Bond-Lamberty; Amy L. Breen; Ishi Buffam; Yihua Cai; Christopher Carcaillet

As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release w ...


Environmental Research Letters | 2012

The footprint of Alaskan tundra fires during the past half-century : implications for surface properties and radiative forcing

Adrian V. Rocha; Michael M. Loranty; Philip E. Higuera; Michelle C. Mack; Feng Sheng Hu; Benjamin M. Jones; Amy L. Breen; Edward B. Rastetter; Scott J. Goetz; Gaius R. Shaver

Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (>10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required.


BioScience | 2016

The Science of Firescapes: Achieving Fire-Resilient Communities

Alistair M. S. Smith; Crystal A. Kolden; Travis B. Paveglio; Mark A. Cochrane; David M. J. S. Bowman; Max A. Moritz; Andrew Kliskey; Lilian Alessa; Andrew T. Hudak; Chad M. Hoffman; James A. Lutz; Lloyd P. Queen; Scott J. Goetz; Philip E. Higuera; Luigi Boschetti; Mike D. Flannigan; Kara M. Yedinak; Adam C. Watts; Eva K. Strand; Jan W. van Wagtendonk; John W. Anderson; Brian J. Stocks; John T. Abatzoglou

Abstract Wildland fire management has reached a crossroads. Current perspectives are not capable of answering interdisciplinary adaptation and mitigation challenges posed by increases in wildfire risk to human populations and the need to reintegrate fire as a vital landscape process. Fire science has been, and continues to be, performed in isolated “silos,” including institutions (e.g., agencies versus universities), organizational structures (e.g., federal agency mandates versus local and state procedures for responding to fire), and research foci (e.g., physical science, natural science, and social science). These silos tend to promote research, management, and policy that focus only on targeted aspects of the “wicked” wildfire problem. In this article, we provide guiding principles to bridge diverse fire science efforts to advance an integrated agenda of wildfire research that can help overcome disciplinary silos and provide insight on how to build fire-resilient communities.

Collaboration


Dive into the Philip E. Higuera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cathy Whitlock

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christy E. Briles

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Duffy

University of Alaska Fairbanks

View shared research outputs
Researchain Logo
Decentralizing Knowledge