Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenichiro Hata is active.

Publication


Featured researches published by Kenichiro Hata.


Nature | 2004

Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting

Masahiro Kaneda; Masaki Okano; Kenichiro Hata; Takashi Sado; Naomi Tsujimoto; En Li; Hiroyuki Sasaki

Imprinted genes are epigenetically marked during gametogenesis so that they are exclusively expressed from either the paternal or the maternal allele in offspring. Imprinting prevents parthenogenesis in mammals and is often disrupted in congenital malformation syndromes, tumours and cloned animals. Although de novo DNA methyltransferases of the Dnmt3 family are implicated in maternal imprinting, the lethality of Dnmt3a and Dnmt3b knockout mice has precluded further studies. We here report the disruption of Dnmt3a and Dnmt3b in germ cells, with their preservation in somatic cells, by conditional knockout technology. Offspring from Dnmt3a conditional mutant females die in utero and lack methylation and allele-specific expression at all maternally imprinted loci examined. Dnmt3a conditional mutant males show impaired spermatogenesis and lack methylation at two of three paternally imprinted loci examined in spermatogonia. By contrast, Dnmt3b conditional mutants and their offspring show no apparent phenotype. The phenotype of Dnmt3a conditional mutants is indistinguishable from that of Dnmt3L knockout mice, except for the discrepancy in methylation at one locus. These results indicate that both Dnmt3a and Dnmt3L are required for methylation of most imprinted loci in germ cells, but also suggest the involvement of other factors.


Genes & Development | 2008

DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes

Satomi Kuramochi-Miyagawa; Toshiaki Watanabe; Kengo Gotoh; Yasushi Totoki; Atsushi Toyoda; Masahito Ikawa; Noriko Asada; Kanako Kojima; Yuka Yamaguchi; Takashi W. Ijiri; Kenichiro Hata; En Li; Yoichi Matsuda; Tohru Kimura; Masaru Okabe; Yoshiyuki Sakaki; Hiroyuki Sasaki; Toru Nakano

Silencing of transposable elements occurs during fetal gametogenesis in males via de novo DNA methylation of their regulatory regions. The loss of MILI (miwi-like) and MIWI2 (mouse piwi 2), two mouse homologs of Drosophila Piwi, activates retrotransposon gene expression by impairing DNA methylation in the regulatory regions of the retrotransposons. However, as it is unclear whether the defective DNA methylation in the mutants is due to the impairment of de novo DNA methylation, we analyze DNA methylation and Piwi-interacting small RNA (piRNA) expression in wild-type, MILI-null, and MIWI2-null male fetal germ cells. We reveal that defective DNA methylation of the regulatory regions of the Line-1 (long interspersed nuclear elements) and IAP (intracisternal A particle) retrotransposons in the MILI-null and MIWI2-null male germ cells takes place at the level of de novo methylation. Comprehensive analysis shows that the piRNAs of fetal germ cells are distinct from those previously identified in neonatal and adult germ cells. The expression of piRNAs is reduced under MILI- and MIWI2-null conditions in fetal germ cells, although the extent of the reduction differs significantly between the two mutants. Our data strongly suggest that MILI and MIWI2 play essential roles in establishing de novo DNA methylation of retrotransposons in fetal male germ cells.


Nature Genetics | 2011

Dynamic CpG island methylation landscape in oocytes and preimplantation embryos

Sébastien A. Smallwood; Shin Ichi Tomizawa; Felix Krueger; Nico Ruf; Natasha Carli; Anne Segonds-Pichon; Shun Sato; Kenichiro Hata; Simon Andrews; Gavin Kelsey

Elucidating how and to what extent CpG islands (CGIs) are methylated in germ cells is essential to understand genomic imprinting and epigenetic reprogramming. Here we present, to our knowledge, the first integrated epigenomic analysis of mammalian oocytes, identifying over a thousand CGIs methylated in mature oocytes. We show that these CGIs depend on DNMT3A and DNMT3L but are not distinct at the sequence level, including in CpG periodicity. They are preferentially located within active transcription units and are relatively depleted in H3K4me3, supporting a general transcription-dependent mechanism of methylation. Very few methylated CGIs are fully protected from post-fertilization reprogramming but, notably, the majority show incomplete demethylation in embryonic day (E) 3.5 blastocysts. Our study shows that CGI methylation in gametes is not entirely related to genomic imprinting but is a strong factor in determining methylation status in preimplantation embryos, suggesting a need to reassess mechanisms of post-fertilization demethylation.


PLOS Genetics | 2012

Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks

Hisato Kobayashi; Takayuki Sakurai; Misaki Imai; Nozomi Takahashi; Atsushi Fukuda; Obata Yayoi; Shun Sato; Kazuhiko Nakabayashi; Kenichiro Hata; Yusuke Sotomaru; Yutaka Suzuki; Tomohiro Kono

Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells.


Developmental Cell | 2009

The TDRD9-MIWI2 Complex Is Essential for piRNA-Mediated Retrotransposon Silencing in the Mouse Male Germline

Masanobu Shoji; Takashi Tanaka; Mihoko Hosokawa; Michael Reuter; Alexander Stark; Yuzuru Kato; Gen Kondoh; Katsuya Okawa; Takeshi Chujo; Tsutomu Suzuki; Kenichiro Hata; Sandra L. Martin; Toshiaki Noce; Satomi Kuramochi-Miyagawa; Toru Nakano; Hiroyuki Sasaki; Ramesh S. Pillai; Norio Nakatsuji; Shinichiro Chuma

Host-defense mechanisms against transposable elements are critical to protect the genome information. Here we show that tudor-domain containing 9 (Tdrd9) is essential for silencing Line-1 retrotransposon in the mouse male germline. Tdrd9 encodes an ATPase/DExH-type helicase, and its mutation causes male sterility showing meiotic failure. In Tdrd9 mutants, Line-1 was highly activated and piwi-interacting small RNAs (piRNAs) corresponding to Line-1 were increased, suggesting that feedforward amplification operates in the mutant. In fetal testes, Tdrd9 mutation causes Line-1 desilencing and an aberrant piRNA profile in prospermatogonia, followed by cognate DNA demethylation. TDRD9 complexes with MIWI2 with distinct compartmentalization in processing bodies, and this TDRD9-MIWI2 localization is regulated by MILI and TDRD1 residing at intermitochondrial cement. Our results identify TDRD9 as a functional partner of MIWI2 and indicate that the tudor-piwi association is a conserved feature, while two separate axes, TDRD9-MIWI2 and TDRD1-MILI, cooperate nonredundantly in the piwi-small RNA pathway in the mouse male germline.


The New England Journal of Medicine | 2017

Autologous Induced Stem-Cell–Derived Retinal Cells for Macular Degeneration

Michiko Mandai; Akira Watanabe; Yasuo Kurimoto; Yasuhiko Hirami; Chikako Morinaga; Takashi Daimon; Masashi Fujihara; Hiroshi Akimaru; Noriko Sakai; Yumiko Shibata; Motoki Terada; Yui Nomiya; Shigeki Tanishima; Masahiro Nakamura; Hiroyuki Kamao; Sunao Sugita; Akishi Onishi; Tomoko Ito; Kanako Fujita; Shin Kawamata; Masahiro J. Go; Chikara Shinohara; Kenichiro Hata; Masanori Sawada; Midori Yamamoto; Sachiko Ohta; Yasuo Ohara; Kenichi Yoshida; Junko Kuwahara; Yuko Kitano

We assessed the feasibility of transplanting a sheet of retinal pigment epithelial (RPE) cells differentiated from induced pluripotent stem cells (iPSCs) in a patient with neovascular age‐related macular degeneration. The iPSCs were generated from skin fibroblasts obtained from two patients with advanced neovascular age‐related macular degeneration and were differentiated into RPE cells. The RPE cells and the iPSCs from which they were derived were subject to extensive testing. A surgery that included the removal of the neovascular membrane and transplantation of the autologous iPSC‐derived RPE cell sheet under the retina was performed in one of the patients. At 1 year after surgery, the transplanted sheet remained intact, best corrected visual acuity had not improved or worsened, and cystoid macular edema was present. (Funded by Highway Program for Realization of Regenerative Medicine and others; University Hospital Medical Information Network Clinical Trials Registry [UMIN‐CTR] number, UMIN000011929.)


Development | 2011

Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes

Shin Ichi Tomizawa; Hisato Kobayashi; Toshiaki Watanabe; Simon Andrews; Kenichiro Hata; Gavin Kelsey; Hiroyuki Sasaki

Mammalian imprinted genes are associated with differentially methylated regions (DMRs) that are CpG methylated on one of the two parental chromosomes. In mice, at least 21 DMRs acquire differential methylation in the germline and many of them act as imprint centres. We previously reported the physical extents of differential methylation at 15 DMRs in mouse embryos at 12.5 days postcoitum. To reveal the ontogeny of differential methylation, we determined and compared methylation patterns of the corresponding regions in sperm and oocytes. We found that the extent of the gametic DMRs differs significantly from that of the embryonic DMRs, especially in the case of paternal gametic DMRs. These results suggest that the gametic DMR sequences should be used to extract the features specifying methylation imprint establishment in the germline: from this analysis, we noted that the maternal gametic DMRs appear as unmethylated islands in male germ cells, which suggests a novel component in the mechanism of gamete-specific marking. Analysis of selected DMRs in blastocysts revealed dynamic changes in allelic methylation in early development, indicating that DMRs are not fully protected from the major epigenetic reprogramming events occurring during preimplantation development. Furthermore, we observed non-CpG methylation in oocytes, but not in sperm, which disappeared by the blastocyst stage. Non-CpG methylation was frequently found at maternally methylated DMRs as well as non-DMR regions, suggesting its prevalence in the oocyte genome. These results provide evidence for a unique methylation profile in oocytes and reveal the surprisingly dynamic nature of DMRs in the early embryo.


Genome Research | 2014

Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment

Franck Court; Chiharu Tayama; Valeria Romanelli; Alex Martin-Trujillo; Isabel Iglesias-Platas; Kohji Okamura; Naoko Sugahara; Carlos Simón; Harry Moore; Julie V. Harness; Hans S. Keirstead; Jose V. Sanchez-Mut; Eisuke Kaneki; Pablo Lapunzina; Hidenobu Soejima; Norio Wake; Manel Esteller; Tsutomu Ogata; Kenichiro Hata; Kazuhiko Nakabayashi; David Monk

Differential methylation between the two alleles of a gene has been observed in imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies, and hydatidiform moles, using a combination of whole-genome bisulfite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as to identify 21 novel loci harboring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further, we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically activated oocytes, individual blastomeres, and blastocysts, in order to identify primary DMRs and reveal the extent of reprogramming during preimplantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci.


Human Molecular Genetics | 2009

Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals

Amandine Henckel; Kazuhiko Nakabayashi; Lionel A. Sanz; Robert Feil; Kenichiro Hata; Philippe Arnaud

Mono-allelic expression of imprinted genes from either the paternal or the maternal allele is mediated by imprinting control regions (ICRs), which are epigenetically marked in an allele-specific fashion. Although, in somatic cells, these epigenetic marks comprise both DNA methylation and histone methylation, the relationship between these two modifications in imprint acquisition and maintenance remains unclear. To address this important question, we analyzed histone modifications at ICRs in mid-gestation embryos that were obtained from Dnmt3L(-/-) females, in which DNA methylation imprints at ICRs are not established during oogenesis. The absence of maternal DNA methylation imprints in these conceptuses led to a marked decrease and loss of allele-specificity of the repressive H3K9me3, H4K20me3 and H2A/H4R3me2 histone modifications, providing the first evidence of a mechanistic link between DNA and histone methylation at ICRs. The existence of this relationship was strengthened by the observation that when DNA methylation was still present at the Snrpn and Peg3 ICRs in some of the progeny of Dnmt3L(-/-) females, these ICRs were associated with the usual patterns of histone methylation. Combined, our data establish that DNA methylation is involved in the acquisition and/or maintenance of histone methylation at ICRs.


Nature Biotechnology | 2016

Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions

Sumiyo Morita; Hirofumi Noguchi; Takuro Horii; Kazuhiko Nakabayashi; Mika Kimura; Kohji Okamura; Atsuhiko Sakai; Hideyuki Nakashima; Kenichiro Hata; Kinichi Nakashima; Izuho Hatada

Despite the importance of DNA methylation in health and disease, technologies to readily manipulate methylation of specific sequences for functional analysis and therapeutic purposes are lacking. Here we adapt the previously described dCas9–SunTag for efficient, targeted demethylation of specific DNA loci. The original SunTag consists of ten copies of the GCN4 peptide separated by 5-amino-acid linkers. To achieve efficient recruitment of an anti-GCN4 scFv fused to the ten-eleven (TET) 1 hydroxylase, which induces demethylation, we changed the linker length to 22 amino acids. The system attains demethylation efficiencies >50% in seven out of nine loci tested. Four of these seven loci showed demethylation of >90%. We demonstrate targeted demethylation of CpGs in regulatory regions and demethylation-dependent 1.7- to 50-fold upregulation of associated genes both in cell culture (embryonic stem cells, cancer cell lines, primary neural precursor cells) and in vivo in mouse fetuses.

Collaboration


Dive into the Kenichiro Hata's collaboration.

Top Co-Authors

Avatar

Kazuhiko Nakabayashi

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wataru Yoshida

Tokyo University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge