Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenji Ohe is active.

Publication


Featured researches published by Kenji Ohe.


Lancet Neurology | 2015

CHCHD2 mutations in autosomal dominant late-onset Parkinson's disease: a genome-wide linkage and sequencing study

Manabu Funayama; Kenji Ohe; Taku Amo; Norihiko Furuya; Junji Yamaguchi; Shinji Saiki; Yuanzhe Li; Kotaro Ogaki; Maya Ando; Hiroyo Yoshino; Hiroyuki Tomiyama; Kenya Nishioka; Kazuko Hasegawa; Hidemoto Saiki; Wataru Satake; Kaoru Mogushi; Ryogen Sasaki; Yasumasa Kokubo; Shigeki Kuzuhara; Tatsushi Toda; Yoshikuni Mizuno; Yasuo Uchiyama; Kinji Ohno; Nobutaka Hattori

BACKGROUND Identification of causative genes in mendelian forms of Parkinsons disease is valuable for understanding the cause of the disease. We did genetic studies in a Japanese family with autosomal dominant Parkinsons disease to identify novel causative genes. METHODS We did a genome-wide linkage analysis on eight affected and five unaffected individuals from a family with autosomal dominant Parkinsons disease (family A). Subsequently, we did exome sequencing on three patients and whole-genome sequencing on one patient in family A. Variants were validated by Sanger sequencing in samples from patients with autosomal dominant Parkinsons disease, patients with sporadic Parkinsons disease, and controls. Participants were identified from the DNA bank of the Comprehensive Genetic Study on Parkinsons Disease and Related Disorders (Juntendo University School of Medicine, Tokyo, Japan) and were classified according to clinical information obtained by neurologists. Splicing abnormalities of CHCHD2 mutants were analysed in SH-SY5Y cells. We used the Fishers exact test to calculate the significance of allele frequencies between patients with sporadic Parkinsons disease and unaffected controls, and we calculated odds ratios and 95% CIs of minor alleles. FINDINGS We identified a missense mutation (CHCHD2, 182C>T, Thr61Ile) in family A by next-generation sequencing. We obtained samples from a further 340 index patients with autosomal dominant Parkinsons disease, 517 patients with sporadic Parkinsons disease, and 559 controls. Three CHCHD2 mutations in four of 341 index cases from independent families with autosomal dominant Parkinsons disease were detected by CHCHD2 mutation screening: 182C>T (Thr61Ile), 434G>A (Arg145Gln), and 300+5G>A. Two single nucleotide variants (-9T>G and 5C>T) in CHCHD2 were confirmed to have different frequencies between sporadic Parkinsons disease and controls, with odds ratios of 2·51 (95% CI 1·48-4·24; p=0·0004) and 4·69 (1·59-13·83, p=0·0025), respectively. One single nucleotide polymorphism (rs816411) was found in CHCHD2 from a previously reported genome-wide association study; however, there was no significant difference in its frequency between patients with Parkinsons disease and controls in a previously reported genome-wide association study (odds ratio 1·17, 95% CI 0·96-1·19; p=0·22). In SH-SY5Y cells, the 300+5G>A mutation but not the other two mutations caused exon 2 skipping. INTERPRETATION CHCHD2 mutations are associated with, and might be a cause of, autosomal dominant Parkinsons disease. Further genetic studies in other populations are needed to confirm the pathogenicity of CHCHD2 mutations in autosomal dominant Parkinsons disease and susceptibility for sporadic Parkinsons disease, and further functional studies are needed to understand how mutant CHCHD2 might play a part in the pathophysiology of Parkinsons disease. FUNDING Japan Society for the Promotion of Science; Japanese Ministry of Education, Culture, Sports, Science and Technology; Japanese Ministry of Health, Labour and Welfare; Takeda Scientific Foundation; Cell Science Research Foundation; and Nakajima Foundation.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia

Mayumi Yoshida; Naoyuki Kataoka; Kenjyo Miyauchi; Kenji Ohe; Kei Iida; Suguru Yoshida; Takayuki Nojima; Yukiko Okuno; Hiroshi Onogi; Tomomi Usui; Akihide Takeuchi; Takamitsu Hosoya; Tsutomu Suzuki; Masatoshi Hagiwara

Significance Familial dysautonomia (FD) is caused by missplicing of the IκB kinase complex-associated protein (IKAP) gene, which results in the skipping of exon 20, especially in neurons. FD would be treatable if exon 20 inclusion were increased correctly to reestablish correct splicing. Here, we have established a dual-color splicing reporter that recapitulates FD-type splicing. By using this reporter, we have identified a small chemical compound, named rectifier of aberrant splicing (RECTAS), that rectifies the aberrant splicing of FD. RECTAS promotes both exon 20 inclusion and the product IKAP expression in cells of patients with FD. Furthermore, we have demonstrated that modification levels of wobble uridine residues of several tRNAs are reduced in FD cells and that RECTAS can recover not only tRNA modifications but also cell viability of FD cells. Familial dysautonomia (FD), a hereditary sensory and autonomic neuropathy, is caused by missplicing of exon 20, resulting from an intronic mutation in the inhibitor of kappa light polypeptide gene enhancer in B cells, kinase complex-associated protein (IKBKAP) gene encoding IKK complex-associated protein (IKAP)/elongator protein 1 (ELP1). A newly established splicing reporter assay allowed us to visualize pathogenic splicing in cells and to screen small chemicals for the ability to correct the aberrant splicing of IKBKAP. Using this splicing reporter, we screened our chemical libraries and identified a compound, rectifier of aberrant splicing (RECTAS), that rectifies the aberrant IKBKAP splicing in cells from patients with FD. Here, we found that the levels of modified uridine at the wobble position in cytoplasmic tRNAs are reduced in cells from patients with FD and that treatment with RECTAS increases the expression of IKAP and recovers the tRNA modifications. These findings suggest that the missplicing of IKBKAP results in reduced tRNA modifications in patients with FD and that RECTAS is a promising therapeutic drug candidate for FD.


Genes to Cells | 2007

HMGA1a: sequence-specific RNA-binding factor causing sporadic Alzheimer's disease-linked exon skipping of presenilin-2 pre-mRNA.

Takayuki Manabe; Kenji Ohe; Taiichi Katayama; Shinsuke Matsuzaki; Takeshi Yanagita; Hiroaki Okuda; Yoshio Bando; Kazunori Imaizumi; Raymond Reeves; Masaya Tohyama; Akila Mayeda

Aberrant exon 5 skipping of presenilin‐2 (PS2) pre‐mRNA produces a deleterious protein isoform PS2V, which is almost exclusively observed in the brains of sporadic Alzheimers disease patients. PS2V over‐expression in vivo enhances susceptibility to various endoplasmic reticulum (ER) stresses and increases production of amyloid‐β peptides. We previously purified and identified high mobility group A protein 1a (HMGA1a) as a trans‐acting factor responsible for aberrant exon 5 skipping. Using heterologous pre‐mRNAs, here we demonstrate that a specific HMGA1a‐binding sequence in exon 5 adjacent to the 5′ splice site is necessary for HMGA1a to inactivate the 5′ splice site. An aberrant HMGA1a–U1 snRNP complex was detected on the HMGA1a‐binding site adjacent to the 5′ splice site during the early splicing reaction. A competitor 2′‐O‐methyl RNA (2′‐O‐Me RNA) consisting of the HMGA1a‐binding sequence markedly repressed exon 5 skipping of PS2 pre‐mRNA in vitro and in vivo. Finally, HMGA1a‐induced cell death under ER stress was prevented by transfection of the competitor 2′‐O‐Me RNA. These results provide insights into the molecular basis for PS2V‐associated neurodegenerative diseases that are initiated by specific RNA binding of HMGA1a.


Scientific Reports | 2013

HnRNP L and hnRNP LL antagonistically modulate PTB-mediated splicing suppression of CHRNA1 pre-mRNA

Mohammad Alinoor Rahman; Akio Masuda; Kenji Ohe; Mikako Ito; David O. Hutchinson; Akila Mayeda; Andrew G. Engel; Kinji Ohno

CHRNA1 gene, encoding the muscle nicotinic acetylcholine receptor alpha subunit, harbors an inframe exon P3A. Inclusion of exon P3A disables assembly of the acetylcholine receptor subunits. A single nucleotide mutation in exon P3A identified in congenital myasthenic syndrome causes exclusive inclusion of exon P3A. The mutation gains a de novo binding affinity for a splicing enhancing RNA-binding protein, hnRNP LL, and displaces binding of a splicing suppressing RNA-binding protein, hnRNP L. The hnRNP L binds to another splicing repressor PTB through the proline-rich region and promotes PTB binding to the polypyrimidine tract upstream of exon P3A, whereas hnRNP LL lacking the proline-rich region cannot bind to PTB. Interaction of hnRNP L with PTB inhibits association of U2AF65 and U1 snRNP with the upstream and downstream of P3A, respectively, which causes a defect in exon P3A definition. HnRNP L and hnRNP LL thus antagonistically modulate PTB-mediated splicing suppression of exon P3A.


Molecular and Cellular Biology | 2010

HMGA1a Trapping of U1 snRNP at an Authentic 5′ Splice Site Induces Aberrant Exon Skipping in Sporadic Alzheimer's Disease

Kenji Ohe; Akila Mayeda

ABSTRACT Overexpression of high-mobility group A protein 1a (HMGA1a) causes aberrant exon 5 skipping of the Presenilin-2 (PS2) pre-mRNA, which is almost exclusively detected in patients with sporadic Alzheimers disease. An electrophoretic mobility shift assay confirmed aberrant U1 small nuclear ribonucleoprotein particle (snRNP)-HMGA1a complex formation (via the U1-70K component), with RNA containing a specific HMGA1a-binding site and an adjacent 5′ splice site. Psoralen cross-linking analysis demonstrated that the binding of HMGA1a adjacent to the 5′ splice site induces unusually extended association of U1 snRNP to the 5′ splice site. As a result, spliceosome assembly across either the intron or the exon is arrested at an early ATP-independent stage. We conclude that the HMGA1a-induced aberrant exon skipping is caused by impaired dissociation of U1 snRNP from the 5′ splice site, leading to a defect in exon definition. The proposed molecular mechanism has profound implications for other known posttranscriptional modulation strategies in various organisms, all of which are triggered by aberrant U1 snRNP binding.


Scientific Reports | 2015

HnRNP C, YB-1 and hnRNP L coordinately enhance skipping of human MUSK exon 10 to generate a Wnt-insensitive MuSK isoform

Farhana Nasrin; Mohammad Alinoor Rahman; Akio Masuda; Kenji Ohe; Jun-ichi Takeda; Kinji Ohno

Muscle specific receptor tyrosine kinase (MuSK) is an essential postsynaptic transmembrane molecule that mediates clustering of acetylcholine receptors (AChR). MUSK exon 10 is alternatively skipped in human, but not in mouse. Skipping of this exon disrupts a cysteine-rich region (Fz-CRD), which is essential for Wnt-mediated AChR clustering. To investigate the underlying mechanisms of alternative splicing, we exploited block-scanning mutagenesis with human minigene and identified a 20-nucleotide block that contained exonic splicing silencers. Using RNA-affinity purification, mass spectrometry, and Western blotting, we identified that hnRNP C, YB-1 and hnRNP L are bound to MUSK exon 10. siRNA-mediated knockdown and cDNA overexpression confirmed the additive, as well as the independent, splicing suppressing effects of hnRNP C, YB-1 and hnRNP L. Antibody-mediated in vitro protein depletion and scanning mutagenesis additionally revealed that binding of hnRNP C to RNA subsequently promotes binding of YB-1 and hnRNP L to the immediate downstream sites and enhances exon skipping. Simultaneous tethering of two splicing trans-factors to the target confirmed the cooperative effect of YB-1 and hnRNP L on hnRNP C-mediated exon skipping. Search for a similar motif in the human genome revealed nine alternative exons that were individually or coordinately regulated by hnRNP C and YB-1.


FEBS Letters | 2013

Nested introns in an intron: evidence of multi-step splicing in a large intron of the human dystrophin pre-mRNA.

Hitoshi Suzuki; Toshiki Kameyama; Kenji Ohe; Toshifumi Tsukahara; Akila Mayeda

The mechanisms by which huge human introns are spliced out precisely are poorly understood. We analyzed large intron 7 (110 199 nucleotides) generated from the human dystrophin (DMD) pre‐mRNA by RT‐PCR. We identified branching between the authentic 5′ splice site and the branch point; however, the sequences far from the branch site were not detectable. This RT‐PCR product was resistant to exoribonuclease (RNase R) digestion, suggesting that the detected lariat intron has a closed loop structure but contains gaps in its sequence. Transient and concomitant generation of at least two branched fragments from nested introns within large intron 7 suggests internal nested splicing events before the ultimate splicing at the authentic 5′ and 3′ splice sites. Nested splicing events, which bring the authentic 5′ and 3′ splice sites into close proximity, could be one of the splicing mechanisms for the extremely large introns.


Nucleic Acids Research | 2016

Competitive regulation of alternative splicing and alternative polyadenylation by hnRNP H and CstF64 determines acetylcholinesterase isoforms

Mohammad Nazim; Akio Masuda; Mohammad Alinoor Rahman; Farhana Nasrin; Jun-ichi Takeda; Kenji Ohe; Bisei Ohkawara; Mikako Ito; Kinji Ohno

Abstract Acetylcholinesterase (AChE), encoded by the ACHE gene, hydrolyzes the neurotransmitter acetylcholine to terminate synaptic transmission. Alternative splicing close to the 3΄ end generates three distinct isoforms of AChET, AChEH and AChER. We found that hnRNP H binds to two specific G-runs in exon 5a of human ACHE and activates the distal alternative 3΄ splice site (ss) between exons 5a and 5b to generate AChET. Specific effect of hnRNP H was corroborated by siRNA-mediated knockdown and artificial tethering of hnRNP H. Furthermore, hnRNP H competes for binding of CstF64 to the overlapping binding sites in exon 5a, and suppresses the selection of a cryptic polyadenylation site (PAS), which additionally ensures transcription of the distal 3΄ ss required for the generation of AChET. Expression levels of hnRNP H were positively correlated with the proportions of the AChET isoform in three different cell lines. HnRNP H thus critically generates AChET by enhancing the distal 3΄ ss and by suppressing the cryptic PAS. Global analysis of CLIP-seq and RNA-seq also revealed that hnRNP H competitively regulates alternative 3΄ ss and alternative PAS in other genes. We propose that hnRNP H is an essential factor that competitively regulates alternative splicing and alternative polyadenylation.


Scientific Reports | 2017

Development of an orally available inhibitor of CLK1 for skipping a mutated dystrophin exon in Duchenne muscular dystrophy

Yukiya Sako; Kensuke Ninomiya; Yukiko Okuno; Masayasu Toyomoto; Atsushi Nishida; Yuka Koike; Kenji Ohe; Isao Kii; Suguru Yoshida; Naohiro Hashimoto; Takamitsu Hosoya; Masafumi Matsuo; Masatoshi Hagiwara

Duchenne muscular dystrophy (DMD) is a fatal progressive muscle-wasting disease. Various attempts are underway to convert severe DMD to a milder phenotype by modulating the splicing of the dystrophin gene and restoring its expression. In our previous study, we reported TG003, an inhibitor of CDC2-like kinase 1 (CLK1), as a splice-modifying compound for exon-skipping therapy; however, its metabolically unstable feature hinders clinical application. Here, we show an orally available inhibitor of CLK1, named TG693, which promoted the skipping of the endogenous mutated exon 31 in DMD patient-derived cells and increased the production of the functional exon 31-skipped dystrophin protein. Oral administration of TG693 to mice inhibited the phosphorylation of serine/arginine-rich proteins, which are the substrates of CLK1, and modulated pre-mRNA splicing in the skeletal muscle. Thus, TG693 is a splicing modulator for the mutated exon 31 of the dystrophin gene in vivo, possibly possessing therapeutic potential for DMD patients.


ACS Chemical Biology | 2015

Modulation of Alternative Splicing with Chemical Compounds in New Therapeutics for Human Diseases

Kenji Ohe; Masatoshi Hagiwara

Collaboration


Dive into the Kenji Ohe's collaboration.

Top Co-Authors

Avatar

Akila Mayeda

Fujita Health University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge