Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth A. Corey is active.

Publication


Featured researches published by Kenneth A. Corey.


Advances in Space Research | 1996

NASA's Biomass Production Chamber: a testbed for bioregenerative life support studies.

R.M. Wheeler; C.L. Mackowiak; G.W. Stutte; John C. Sager; N.C. Yorio; L.M. Ruffe; Russ E. Fortson; Thomas W. Dreschel; William M. Knott; Kenneth A. Corey

The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASAs Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.


BioScience | 1992

GAS EXCHANGE IN NASA'S BIOMASS PRODUCTION CHAMBER : A PREPROTOTYPE CLOSED HUMAN LIFE SUPPORT SYSTEM

Kenneth A. Corey; Raymond M. Wheeler

An important aspect of environmental control in a life-support system is the monitoring and regulation of atmospheric gases (Sager et al. 1988) at concentrations required for the maintenance of all life forms. It will be necessary to know the rates of CO2 use, oxygen evolution, and water flux through evapotranspiration by a crop stand under various environmental conditions, so that appropriate designs and control systems for maintaining mass balances of those gases can be achieved for a full range of environmental regimes. Mass budgets of gases will also enable evaluation of crop health by monitoring directly the rates of gas exchange and indirectly the rate of accumulation of dry matter, based on rates of carbon dioxide use. This article focuses on the unique capabilities of the NASA biomass production chamber for monitoring and evaluating gas exchange rates, with special emphasis on results with wheat and soybean, two candidate species identified by NASA for CELSS.


Advances in Space Research | 1996

Carbon dioxide exchange of lettuce plants under hypobaric conditions

Kenneth A. Corey; M.E. Bates; S.L. Adams

Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of <0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS.


Advances in Space Research | 1997

Photosynthesis and respiration of a wheat stand at reduced atmospheric pressure and reduced oxygen.

Kenneth A. Corey; Daniel J. Barta; D.L. Henninger

A 34-day functional test was conducted in Johnson Space Centers Variable Pressure Growth Chamber (VPGC) to determine responses of a wheat stand to reduced pressure (70 kPa) and modified partial pressures of carbon dioxide and oxygen. Reduced pressure episodes were generally six to seven hours in duration, were conducted at reduced ppO2 (14.7 kPa), and were interrupted with longer durations of ambient pressure (101 kPa). Daily measurements of stand net photosynthesis (Pn) and dark respiration (DR) were made at both pressures using a ppCO2 of 121 Pa. Corrections derived from leakage tests were applied to reduced pressure measurements. Rates of Pn at reduced pressure averaged over the complete test were 14.6% higher than at ambient pressure, but rates of DR were unaffected. Further reductions in ppO2 were achieved with a molecular sieve and were used to determine if Pn was enhanced by lowered O2 or by lowered pressure. Decreased ppO2 resulted in enhanced rates of Pn, regardless of pressure, but the actual response was dependent on the ratio of ppO2/ppCO2. Over the range of ppO2/ppCO2 of 80 to 200, the rate of Pn declined linearly. Rate of DR was unaffected over the same range and by dissolved O2 levels down to 3.1 ppm, suggesting that normal rhizosphere and canopy respiration occur at atmospheric ppO2 levels as low as 11 kPa. Partial separation of effects attributable to oxygen and those related to reduced pressure (e.g. enhanced diffusion of CO2) was achieved from analysis of a CO2 drawdown experiment. Results will be used for design and implementation of studies involving complete crop growth tests at reduced pressure.


Journal of Plant Nutrition | 1993

A data base of crop nutrient use, water use, and carbon dioxide exchange in a 2O square meter growth chamber: I. Wheat as a case study

Raymond M. Wheeler; Wade L. Berry; C.L. Mackowiak; Kenneth A. Corey; John C. Sager; Margaret M. Heeb; William M. Knott

A data set is given describing the daily nutrient uptake, gas exchange, environmental conditions, and carbon (C), and nutrient partitioning at harvest for the entire canopy and root system of a wheat crop (Triticum aestivum, cv. Yecora Rojo). The data were obtained from a 20 m2 stand of wheat plants grown from planting to maturity in a closed, controlled environment, and include daily nutrient uptake [macronutrients, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S); and micronutrients, iron (Fe), boron (B), manganese (Mn), zinc (Zn), copper (Cu), and molybdenum (Mo)], canopy carbon dioxide (CO2) exchange rates, and transpiration. Environmental factors such as relative humidity, air temperature, nutrient solution temperature, pH and electrical conductivity, and photoperiod were controlled in the chamber to specific set points. A detailed description of biomass yield for each of the 64 plant growth trays comprising the 20 m2 of growth area is also provided, and includes dry weights of grain, straw, chaff, and roots, along with the concentration of nutrients in different plant tissues and the percent carbohydrate, fat, and protein. To our knowledge, this information represents one of the most extensive data sets available for a canopy of wheat grown from seed to maturity under controlled environmental and nutritional conditions, and thus may provide useful information for model development and validation. A methods section is included to qualify any assumptions that might be required for the use of the data in plant growth models, along with a daily event calendar indicating when adjustments in set points and occasional equipment or sensor failures occurred.


Advances in Space Research | 1997

Atmospheric leakage and method for measurement of gas exchange rates of a crop stand at reduced pressure

Kenneth A. Corey; Daniel J. Barta; M.A. Edeen; D.L. Henninger

The variable pressure growth chamber (VPGC) was used in a 34-day functional test to grow a wheat crop using reduced pressure (70 kPa) episodes totalling 131 hours. Primary goals of the test were to verify facility and subsystem performance at 70 kPa and to determine responses of a wheat stand to reduced pressure and modified partial pressures of carbon dioxide and oxygen. Operation and maintenance of the chamber at 70 kpa involved continuous evacuation of the chamber atmosphere, leading to CO2 influx and efflux. A model for calculating CO2-exchange rates (net photosynthesis and dark respiration) was developed and tested and involved measurements of chamber leakage to determine appropriate corrections. Measurement of chamber leakage was based on the rate of pressure change over a small pressure increment (70.3 to 72.3 kPa) with the pump disabled. Leakage values were used to correct decreases and increases in chamber CO2 concentration resulting from net photosynthesis (Ps) and dark respiration (DR), respectively. Composite leakage corrections (influx and efflux) at day 7 of the test were 9% and 19% of the changes measured for Ps and DR, respectively. On day 33, composite corrections were only 3% for Ps and 4% for DR. During the test, the chamber became progressively tighter; the leak rate at 70.3 kPa decreasing from 2.36 chamber volumes/day pretest, to 1.71 volumes/day at the beginning of the test, and 1.16 volumes/day at the end of the test. Verification of the short-term leakage tests (rate of pressure rise) were made by testing CO2 leakage with the vacuum pump enabled and disabled. Results demonstrate the suitability of the VPGC or conducting gas exhange measurements of a crop stand at reduced pressure.


international conference on evolvable systems | 1993

Engineering Strategies and Implications of Using Higer Plants for Throttling Gas and Water Exchange in a Controlled Ecological Life Support System

Dennis Chamberland; Raymond M. Wheeler; Kenneth A. Corey

Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Centers Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.


Crop Science | 1993

Gas exchange characteristics of wheat stands grown in a closed, controlled environment.

Raymond M. Wheeler; Kenneth A. Corey; John C. Sager; William M. Knott


Astrobiology | 2006

Exposure of Arabidopsis thaliana to hypobaric environments: implications for low-pressure bioregenerative life support systems for human exploration missions and terraforming on Mars.

Jeffrey T. Richards; Kenneth A. Corey; Anna-Lisa Paul; Robert J. Ferl; Raymond M. Wheeler; Andrew C. Schuerger


Life support & biosphere science : international journal of earth space | 2002

Toward Martian agriculture: responses of plants to hypobaria

Kenneth A. Corey; Daniel J. Barta; Raymond M. Wheeler

Collaboration


Dive into the Kenneth A. Corey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Barta

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gayle M. Volk

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge