Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth D. R. Setchell is active.

Publication


Featured researches published by Kenneth D. R. Setchell.


Nutrition and Cancer | 1994

Soy intake and cancer risk: A review of the in vitro and in vivo data

Mark Messina; Victoria Persky; Kenneth D. R. Setchell; Stephen Barnes

International variations in cancer rates have been attributed, at least in part, to differences in dietary intake. Recently, it has been suggested that consumption of soyfoods may contribute to the relatively low rates of breast, colon, and prostate cancers in countries such as China and Japan. Soybeans contain a number of anticarcinogens, and a recent National Cancer Institute workshop recommended that the role of soyfoods in cancer prevention be investigated. In this review, the hypothesis that soy intake reduces cancer risk is considered by examining relevant in vitro, animal, and epidemiological data. Soybeans are a unique dietary source of the isoflavone genistein, which possesses weak estrogenic activity and has been shown to act in animal models as an antiestrogen. Genistein is also a specific inhibitor of protein tyrosine kinases; it also inhibits DNA topoisomerases and other critical enzymes involved in signal transduction. In vitro, genistein suppresses the growth of a wide range of cancer cells, with IC50 values ranging from 5 to 40 microM (1-10 micrograms/ml). Of the 26 animal studies of experimental carcinogenesis in which diets containing soy or soybean isoflavones were employed, 17 (65%) reported protective effects. No studies reported soy intake increased tumor development. The epidemiological data are also inconsistent, although consumption of nonfermented soy products, such as soymilk and tofu, tended to be either protective or not associated with cancer risk; however, no consistent pattern was evident with the fermented soy products, such as miso. Protective effects were observed for both hormone- and nonhormone-related cancers. While a definitive statement that soy reduces cancer risk cannot be made at this time, there is sufficient evidence of a protective effect to warrant continued investigation.


The American Journal of Clinical Nutrition | 1998

Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones.

Kenneth D. R. Setchell

The importance of estrogens in homeostatic regulation of many cellular and biochemical events is well illustrated by the pathophysiologic changes that occur with estrogen deficiency. Many of the major diseases of Western populations are hormone dependent and epidemiologic data have shown a strong association between their incidence and diet. In particular, the importance of a plant-based diet is evident from the current dietary recommendations that emphasize an increase in the proportion and amount of fruit and vegetables that should be consumed. Although interpretation of the role of individual components of the diet is difficult from epidemiologic and dietary studies, it is recognized that there are many plant-derived bioactive nonnutrients that can confer significant health benefits. Among these phytochemicals is the broad class of nonsteroidal estrogens called phytoestrogens, and in the past decade there has been considerable interest in the role of isoflavones because of their relatively high concentrations in soy protein. The isoflavones in modest amounts of ingested soy protein are biotransformed by intestinal microflora, are absorbed, undergo enterohepatic recycling, and reach circulating concentrations that exceed by several orders of magnitude the amounts of endogenous estrogens. These phytoestrogens and their metabolites have many potent hormonal and nonhormonal activities that may explain some of the biological effects of diets rich in phytoestrogens.


Journal of Nutrition | 2001

Bioavailability of Pure Isoflavones in Healthy Humans and Analysis of Commercial Soy Isoflavone Supplements

Kenneth D. R. Setchell; Nadine M. Brown; Pankaj Desai; Linda Zimmer-Nechemias; Brian Wolfe; Wayne T. Brashear; Abby S. Kirschner; Aedin Cassidy; James E. Heubi

The pharmacokinetic behavior of naturally occurring isoflavones has been determined for the first time in healthy adults. We compared plasma kinetics of pure daidzein, genistein and their beta-glycosides administered as a single-bolus dose to 19 healthy women. This study demonstrates differences in the pharmacokinetics of isoflavone glycosides compared with their respective beta-glycosides. Although all isoflavones are efficiently absorbed from the intestinal tract, there are striking differences in the fate of aglycones and beta-glycosides. Mean time to attain peak plasma concentrations (t(max)) for the aglycones genistein and daidzein was 5.2 and 6.6 h, respectively, whereas for the corresponding beta-glycosides, the t(max) was delayed to 9.3 and 9.0 h, respectively, consistent with the residence time needed for hydrolytic cleavage of the glycoside moiety for bioavailability. The apparent volume of distribution of isoflavones confirms extensive tissue distribution after absorption. Plasma genistein concentrations are consistently higher than daidzein when equal amounts of the two isoflavones are administered, and this is accounted for by the more extensive distribution of daidzein (236 L) compared with genistein (161 L). The systemic bioavailability of genistein [mean AUC = 4.54 microg/(mL x h)] is much greater than that of daidzein [mean AUC = 2.94 microg/(mL x h)], and bioavailability of these isoflavones is greater when ingested as beta-glycosides rather than aglycones as measured from the area under the curve of the plasma appearance and disappearance concentrations. The pharmacokinetics of methoxylated isoflavones show distinct differences depending on the position of the methoxyl group in the molecule. Glycitin, found in two phytoestrogen supplements, underwent hydrolysis of the beta-glycoside moiety and little further biotransformation, leading to high plasma glycitein concentrations. Biochanin A and formononetin, two isoflavones found in one phytoestrogen supplement, were rapidly and efficiently demethylated, resulting in high plasma genistein and daidzein concentrations typically observed after the ingestion of soy-containing foods. These differences in pharmacokinetics and metabolism have implications for clinical studies because it cannot be assumed that all isoflavones are comparable in their pharmacokinetics and bioavailability. An analysis of 33 phytoestrogen supplements and extracts revealed considerable differences in the isoflavone content from that claimed by the manufacturers. Plasma concentrations of isoflavones show marked qualitative and quantitative differences depending on the type of supplement ingested. These studies indicate a need for improvement in quality assurance and standardization of such products.


The Lancet | 1997

Exposure of infants to phyto-oestrogens from soy-based infant formula

Kenneth D. R. Setchell; Linda Zimmer-Nechemias; Jinnan Cai; James E. Heubi

BACKGROUND The isoflavones genistein, daidzein, and their glycosides, found in high concentrations in soybeans and soy-protein foods, may have beneficial effects in the prevention or treatment of many hormone-dependent diseases. Because these bioactive phyto-oestrogens possess a wide range of hormonal and non-hormonal activities, it has been suggested that adverse effects may occur in infants fed soy-based formulas. METHODS To evaluate the extent of infant exposure to phyto-oestrogens from soy formula, the isoflavone composition of 25 randomly selected samples from five major brands of commercially available soy-based infant formulas were analysed, and the plasma concentrations of genistein and daidzein, and the intestinally derived metabolite, equol, were compared in 4-month-old infants fed exclusively soy-based infant formula (n = 7), cow-milk formula (n = 7), or human breast-milk (n = 7). FINDINGS All of the soy formulas contained mainly glycosides of genistein and daidzein, and the total isoflavone content was similar among the five formulas analysed and was related to the proportion of soy isolate used in their manufacture. From the concentrations of isoflavones in these formulas (means 32-47 micrograms/mL), the typical daily volume of milk consumed, and average bodyweight, a 4-month-old infant fed soy formula would be exposed to 28-47 per day, or about 4.5-8.0 mg/kg bodyweight per day, of total isoflavones. Mean (SD) plasma concentrations of genistein and daidzein in the seven infants fed soy-based formulas were 684 (443) ng/mL and 295 (60) ng/mL, respectively, which was significantly greater (p < 0.05) than in the infants fed either cow-milk formulas (3.2 [0.7] and 2.1 [0.3] ng/mL), or human breast-milk (2.8 [0.7] and 1.4 [0.1] ng/mL), and an order of magnitude higher per bodyweight than typical plasma concentrations of adults consuming soy foods. INTERPRETATION The daily exposure of infants to isoflavones in soy infant-formulas is 6-11 fold higher on a bodyweight basis than the dose that has hormonal effects in adults consuming soy foods. Circulating concentrations of isoflavones in the seven infants fed soy-based formula were 13000-22000 times higher than plasma oestradiol concentrations in early life, and may be sufficient to exert biological effects, whereas the contribution of isoflavones from breast-milk and cow-milk is negligible.


Journal of The American College of Nutrition | 2001

Soy Isoflavones—Benefits and Risks from Nature’s Selective Estrogen Receptor Modulators (SERMs)

Kenneth D. R. Setchell

Phytoestrogens have become one of the more topical areas of interest in clinical nutrition. These non-nutrient bioactive compounds are ubiquitous to the plant kingdom and possess a wide range of biological properties that contribute to the many different health-related benefits reported for soy foods and flaxseeds—two of the most abundant dietary sources of phytoestrogens. Reviewed is the recent knowledge related to their pharmacokinetics and clinical effects, focusing mainly on isoflavones that are found in high concentrations in soy foods. Arguments are made for considering soy isoflavones as natural selective estrogen receptor modulators (SERMs) based upon recent data of their conformational binding to estrogen receptors. Rebuttal is made to several key and important issues related to the recent concerns about the safety of soy and its constituent isoflavones. This article is not intended to be a comprehensive review of the literature but merely highlight recent research with key historical perspectives.


The American Journal of Clinical Nutrition | 1998

Isoflavone content of infant formulas and the metabolic fate of these phytoestrogens in early life.

Kenneth D. R. Setchell; Linda Zimmer-Nechemias; Jinnan Cai; James E. Heubi

Soy-based infant formulas have been in use for >30 y. These formulas are manufactured from soy protein isolates and contain significant amounts of phytoestrogens of the isoflavone class. As determined by HPLC, the isoflavone compositions of commercially available formulas are similar qualitatively and quantitatively and are consistent with the isoflavone composition of soy protein isolates. Genistein, found predominantly in the form of glycosidic conjugates, accounts for >65% of the isoflavones in soy-based formulas. Total isoflavone concentrations of soy-based formulas prepared for infant feeding range from 32 to 47 mg/L, whereas isoflavone concentrations in human breast milk are only 5.6 +/- 4.4 microg/L (mean +/- SD, n = 9). Infants fed soy-based formulas are therefore exposed to 22-45 mg isoflavones/d (6-11 mg x kg body wt(-1) x d(-1)), whereas the intake of these phytoestrogens from human milk is negligible (<0.01 mg/d). The metabolic fate of isoflavones from soy-based infant formula is described. Plasma isoflavone concentrations reported previously for 4-mo-old infants fed soy-based formula were 654-1775 microg/L (mean: 979.7 microg/L: Lancet 1997:350;23-7), significantly higher than plasma concentrations of infants fed either cow-milk formula (mean +/- SD: 9.4 +/- 1.2 microg/L) or human breast milk (4.7 +/- 1.3 microg/L). The high steady state plasma concentration of isoflavones in infants fed soy-based formula is explained by reduced intestinal biotransformation, as evidenced by low or undetectable concentrations of equol and other metabolites, and is maintained by constant daily exposure from frequent feeding. Isoflavones circulate at concentrations that are 13,000-22,000-fold higher than plasma estradiol concentrations in early life. Exposure to these phytoestrogens early in life may have long-term health benefits for hormone-dependent diseases.


The American Journal of Clinical Nutrition | 2003

Dietary phytoestrogens and their effect on bone: evidence from in vitro and in vivo, human observational, and dietary intervention studies

Kenneth D. R. Setchell; Eva Lydeking-Olsen

Impressive data from the many studies on cultured bone cells and rat models of postmenopausal osteoporosis support a significant bone-sparing effect of the soy isoflavones genistein and daidzein. Translating this research to the clinic has been more challenging, and thus far only a few clinical studies have attempted to tease out the influence of phytoestrogens on bone from the many other components of the diet. Human studies have shown promising although variable results. Studies have been mostly of short duration and with relatively small sample sizes, making it difficult to observe significant and accurate changes in bone. Levels of intake of the soy protein and isoflavones are varied, and the optimal isoflavone intake for bone-sparing effects remains to be determined. Clinical studies thus far performed can be broadly divided into those that have assessed biochemical evidence of reduced bone turnover from measurement of surrogate markers of osteoblast and osteoclast activity, and those that have examined changes in bone mineral density. There are no studies examining effects on fracture rate. This review focuses specifically on the potential influence of phytoestrogens on bone by examining the evidence from 17 in vitro studies of cultured bone cells, 24 in vivo studies of animal models for postmenopausal osteoporosis, 15 human observational/epidemiologic studies, and 17 dietary intervention studies. On balance, the collective data suggest that diets rich in phytoestrogens have bone-sparing effects in the long term, although the magnitude of the effect and the exact mechanism(s) of action are presently elusive or speculative.


Journal of Clinical Investigation | 1998

Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease.

Kenneth D. R. Setchell; Margrit Schwarz; Nancy C. O'Connell; Erik G. Lund; Daphne L. Davis; Richard Lathe; Henry R. Thompson; R. Weslie Tyson; Ronald J. Sokol; David W. Russell

We describe a metabolic defect in bile acid synthesis involving a deficiency in 7alpha-hydroxylation due to a mutation in the gene for the microsomal oxysterol 7alpha-hydroxylase enzyme, active in the acidic pathway for bile acid synthesis. The defect, identified in a 10-wk-old boy presenting with severe cholestasis, cirrhosis, and liver synthetic failure, was established by fast atom bombardment ionization-mass spectrometry, which revealed elevated urinary bile acid excretion, a mass spectrum with intense ions at m/z 453 and m/z 510 corresponding to sulfate and glycosulfate conjugates of unsaturated monohydroxy-cholenoic acids, and an absence of primary bile acids. Gas chromatography-mass spectrometric analysis confirmed the major products of hepatic synthesis to be 3beta-hydroxy-5-cholenoic and 3beta-hydroxy-5-cholestenoic acids, which accounted for 96% of the total serum bile acids. Levels of 27-hydroxycholesterol were > 4,500 times normal. The biochemical findings were consistent with a deficiency in 7alpha-hydroxylation, leading to the accumulation of hepatotoxic unsaturated monohydroxy bile acids. Hepatic microsomal oxysterol 7alpha-hydroxylase activity was undetectable in the patient. Gene analysis revealed a cytosine to thymidine transition mutation in exon 5 that converts an arginine codon at position 388 to a stop codon. The truncated protein was inactive when expressed in 293 cells. These findings indicate the quantitative importance of the acidic pathway in early life in humans and define a further inborn error in bile acid synthesis as a metabolic cause of severe cholestatic liver disease.


British Journal of Nutrition | 1995

Biological effects of isoflavones in young women: importance of the chemical composition of soyabean products

Aedin Cassidy; Sheila Bingham; Kenneth D. R. Setchell

To examine the hormonal effects of isoflavones, of which soyabean is a rich source, fifteen healthy nonvegetarian premenopausal women were studied over 9 months. They lived in a metabolic suite for between 4 and 6 months where their diet and activity levels were kept constant and their hormonal status was measured over two or three menstrual cycles. During one (control) menstrual cycle a normal but constant diet containing no soyabean products was fed. Then, over a second complete cycle six subjects consumed a similar diet into which 60 g textured vegetable protein (TVP)/d, containing 45 mg conjugated isoflavones, had been incorporated. Three participants had 50 g miso (a fermented soyabean paste), containing 25 mg unconjugated isoflavones, added daily to their diet over a menstrual cycle, and six others consumed 28 g TVP/d, containing 23 mg conjugated isoflavones. Five participants completed a third diet period where they were randomly assigned to consume either the control diet over a cycle, or a similar diet incorporating 60 g of a soyabean product which had had the isoflavones chemically extracted (Arcon F). Follicular phase length was significantly (P < 0.01) increased and peak progesterone concentrations were delayed with 60 g TVP but no effects were observed with Arcon F. The increase in menstrual cycle length did not reach statistical significance in the three three subject who ate 50 g miso/d, but peak progesterone levels were significantly (P < 0.05) delayed. Mid-cycle peaks of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were suppressed with 45 mg conjugated isoflavones as 60 g TVP (P < 0.05 and P < 0.01 respectively). No other changes in sex-steroid hormone levels were observed on any of the other diets. A significant reduction in total cholesterol was found with 45 mg conjugated isoflavones (P < 0.05), but not with 23 mg conjugated isoflavone-free Arcon F. There was no effect of menstrual cycle phase on transit time.


Laboratory Investigation | 2001

Animal Models Impacted by Phytoestrogens in Commercial Chow: Implications for Pathways Influenced by Hormones

Nadine M. Brown; Kenneth D. R. Setchell

It is generally not known that most commercial rodent diets are formulated with soy protein and deliver large daily doses of isoflavones to animals throughout their lifespan, including the in utero period. Here, we demonstrate that isoflavones are bioavailable and show that commercial rodent diets universally used by animal facilities lead to very high steady-state serum isoflavone concentrations in adult rats (2613 ± 873 ng/mL) and mice (2338 ± 531 ng/mL), exceeding the animals endogenous estrogen level by 30,000- to 60,000-fold. We demonstrate the maternal-fetal intrauterine transfer of isoflavones in animals fed a standard Purina 5001 soy-containing diet and show that newborn rat pups have high serum isoflavones levels (540 ± 174 ng/mL) that are maintained throughout the suckling period by passage of isoflavones into maternal milk. These findings have profound implications for all animal experiments, including multigenerational studies and studies of transgenic animals, especially if biochemical or morphological end-points are influenced by the hormonal or nonhormonal properties of phytoestrogens. These compounds have the potential to modulate genotypic and phenotypic expression in general, and therefore, all investigators should be vigilant to the phytoestrogen composition of commercial rodent diets because there is a history of potent biological effects in larger animals and in humans from high circulating isoflavone concentrations.

Collaboration


Dive into the Kenneth D. R. Setchell's collaboration.

Top Co-Authors

Avatar

Wujuan Zhang

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

James E. Heubi

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gregory A. Grabowski

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadine M. Brown

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ying Sun

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xueheng Zhao

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rohit Kohli

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brian Wolfe

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge