Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xueheng Zhao is active.

Publication


Featured researches published by Xueheng Zhao.


The American Journal of Clinical Nutrition | 2011

Soy isoflavone phase II metabolism differs between rodents and humans: implications for the effect on breast cancer risk

Kenneth D. R. Setchell; Nadine M. Brown; Xueheng Zhao; Stephanie L. Lindley; James E. Heubi; Eileen C. King; Mark Messina

BACKGROUND Human and animal studies have produced conflicting results with regard to the effect of soy isoflavones on breast cancer risk. This may be due to differences in isoflavone metabolism. OBJECTIVE The objective of this study was to determine whether soy isoflavone phase II metabolism differs between humans and rodents. DESIGN Circulating total and unconjugated isoflavone concentrations were determined by mass spectrometry in plasma samples from 7 separate studies: 1) in Sprague-Dawley rats and in 3 strains of mice fed commercial soy-containing diets; 2) in Sprague-Dawley rats gavaged with genistein; 3) in healthy adults who consumed single servings of soy nuts, soy milk, and tempeh; 4) in healthy adults subchronically given soy milk; 5) in healthy women orally administered 50 mg genistein; 6) in healthy women orally administered 20 mg pure S-(-)equol; and 7) in 6-mo-old infants fed soy infant formula and later, at age 3 y, a soy germ isoflavone supplement. RESULTS The proportion of unconjugated genistein in plasma from adults and infants who consumed different soy foods, pure genistein, or an isoflavone supplement was <1% in steady state and <2% at peak concentrations. By contrast, rodents fed soy-containing diets conjugate isoflavones less efficiently. The plasma percentages of unconjugated genistein concentrations in Sprague-Dawley rats and C57BL/6, nude, and transgenic AngptL4B6 mice were 4.0 ± 0.6%, 4.6 ± 0.6%, 11.6 ± 0%, and 30.1 ± 4.3%, respectively, which represent 20, 23, 58, and 150 times that in humans. CONCLUSION The markedly higher circulating concentrations of biologically active (unconjugated) genistein in certain strains of mice cast doubt on the value of the use of these rodents for gaining insight into the effects of isoflavones in humans, especially with regard to the effects on breast tissue.


The American Journal of Clinical Nutrition | 2009

The pharmacokinetic behavior of the soy isoflavone metabolite S-(−)equol and its diastereoisomer R-(+)equol in healthy adults determined by using stable-isotope-labeled tracers

Kenneth D. R. Setchell; Xueheng Zhao; Pinky Jha; James E. Heubi; Nadine M. Brown

BACKGROUND The nonsteroidal estrogen equol occurs as diastereoisomers, S-(-)equol and R-(+)equol, both of which have significant biological actions. S-(-)equol, the naturally occurring enantiomer produced by 20-30% of adults consuming soy foods, has selective affinity for estrogen receptor-beta, whereas both enantiomers modulate androgen action. Little is known about the pharmacokinetics of the diastereoisomers, despite current interest in developing equol as a nutraceutical or pharmaceutical agent. OBJECTIVE The objective was to compare the pharmacokinetics of S-(-)equol and R-(+)equol by using [13C] stable-isotope-labeled tracers to facilitate the optimization of clinical studies aimed at evaluating the potential of these diastereoisomers in the prevention and treatment of estrogen- and androgen-dependent conditions. DESIGN A randomized, crossover, open-label study in 12 healthy adults (6 men and 6 women) compared the plasma and urinary pharmacokinetics of orally administered enantiomeric pure forms of S-(-)[2-13C]equol, R-(+)[2-13C]equol, and the racemic mixture. Plasma and urinary [13C]R-equol and [13C]S-equol concentrations were measured by tandem mass spectrometry. RESULTS Plasma [13C]equol concentration appearance and disappearance curves showed that both enantiomers were rapidly absorbed, attained high circulating concentrations, and had a similar terminal elimination half-life of 7-8 h. The systemic bioavailability and fractional absorption of R-(+)[2-13C]equol were higher than those of S-(-)[2-13C]equol or the racemate. The pharmacokinetics of racemic (+/-)[2-13C]equol were different from those of the individual enantiomers: slower absorption, lower peak plasma concentrations, and lower systemic bioavailability. CONCLUSIONS The high bioavailability of both diastereoisomers contrasts with previous findings for the soy isoflavones daidzein and genistein, both of which have relatively poor bioavailability, and suggests that low doses of equol taken twice daily may be sufficient to achieve biological effects.


Journal of Nutrition | 2009

The Pharmacokinetics of S-(-)Equol Administered as SE5-OH Tablets to Healthy Postmenopausal Women

Kenneth D. R. Setchell; Xueheng Zhao; Susan E. Shoaf; Karen Ragland

The soy isoflavone metabolite, S-(-)equol, has selective affinity for estrogen receptor (ER)beta and also antagonizes in vivo the action of dihydrotestosterone. It is therefore of interest as a potential new therapeutic agent in hormone-dependent conditions and is under development as a nutraceutical. Our objective in this study was to define the pharmacokinetics of natural S-(-)equol after administration of SE5-OH, a newly developed S-(-)equol supplement made by incubation of the equol-producing bacterium Lactococcus garvieae with soy germ isoflavones. In a single-center, open-label, randomized, 2-period crossover design study, the pharmacokinetics of S-(-)equol administered as single-bolus oral doses of 10 and 30 mg in the form of SE5-OH tablets was determined in 12 healthy postmenopausal women. S-(-)equol was measured in plasma and urine collected at timed intervals over a 48-h period postdosing using tandem MS. Equol-producer status was also determined after a soymilk challenge conducted after the pharmacokinetic sampling was complete. S-(-)equol was rapidly absorbed after oral administration and attained high plasma concentrations, with a plasma elimination half-life of 8 h. The maximum plasma concentration/dose, area under the plasma concentration-time curve from time 0 to infinity/dose, and the fraction of dose excreted in urine (%f(e,u)) were similar for the 2 doses, indicating a dose-proportional response in total S-(-)equol pharmacokinetics. The systemic bioavailability of S-(-)equol was very high, as the %f(e,u) was 82% for both doses, which is greater than published data for the soy isoflavones daidzein and genistein. Three participants were determined to be equol-producers, representing a 25% frequency, and equol-producer status had no effect on natural S-(-)equol pharmacokinetics.


Carcinogenesis | 2010

The chemopreventive action of equol enantiomers in a chemically induced animal model of breast cancer.

Nadine M. Brown; Carrie A. Belles; Stephanie L. Lindley; Linda Zimmer-Nechemias; Xueheng Zhao; David P. Witte; Mi-Ok Kim; Kenneth D. R. Setchell

We describe for the first time the chemopreventive effects of S-(-)equol and R-(+)equol, diastereoisomers with contrasting affinities for estrogen receptors (ERs). S-(-)equol, a ligand for ERbeta, is an intestinally derived metabolite formed by many humans and by rodents consuming diets containing soy isoflavones. Whether the well-documented chemopreventive effect of a soy diet could be explained by equols action was unclear because neither diastereoisomers had been tested in animal models of chemoprevention. Sprague-Dawley rats (n = 40-41 per group) were fed a soy-free AIN-93G diet or an AIN-93G diet supplemented with 250 mg/kg of S-(-)equol or R-(+)equol beginning day 35. On day 50, mammary tumors were induced by dimethylbenz[a]anthracene and thereafter, animals were palpated for number and location of tumors. On day 190, animals were killed and mammary tumors were removed and verified by histology, and the degree of invasiveness and differentiation was determined. S-(-)equol and R-(+)equol plasma concentrations measured on days 35, 100 and 190 by tandem mass spectrometry confirmed diet compliance and no biotransformation of either diastereoisomer. In this model, S-(-)equol had no chemopreventive action, nor was it stimulatory. In contrast, R-(+)equol compared with Controls reduced palpable tumors (P = 0.002), resulted in 43% fewer tumors (P = 0.004), increased tumor latency (88.5 versus 66 days, P = 0.003), and tumors were less invasive but showed no difference in pattern grade or mitosis. Both enantiomers had no effect on absolute uterine weight but caused a significant reduction in body weight gain. In conclusion, the novel finding that the unnatural enantiomer, R-(+)equol, was potently chemopreventive warrants investigation of its potential for breast cancer prevention and treatment.


Cancer Prevention Research | 2010

Reduction in Ki-67 in Benign Breast Tissue of High-Risk Women with the Lignan Secoisolariciresinol Diglycoside

Carol J. Fabian; Bruce F. Kimler; Carola M. Zalles; Jennifer R. Klemp; Brian K. Petroff; Qamar J. Khan; Priyanka Sharma; Kenneth D. R. Setchell; Xueheng Zhao; Teresa A. Phillips; Trina Metheny; Jennifer R. Hughes; Hung Wen Yeh; Karen A. Johnson

Preclinical and correlative studies suggest reduced breast cancer with higher lignan intake or blood levels. We conducted a pilot study of modulation of risk biomarkers for breast cancer in premenopausal women after administration of the plant lignan secoisolariciresinol given as the diglycoside (SDG). Eligibility criteria included regular menstrual cycles, no oral contraceptives, a >3-fold increase in 5-year risk, and baseline Ki-67 of ≥2% in areas of hyperplasia in breast tissue sampled by random periareolar fine-needle aspiration (RPFNA) during the follicular phase of the menstrual cycle. SDG (50 mg/d) was given for 12 months, followed by repeat RPFNA. The primary end point was change in Ki-67. Secondary end points included change in cytomorphology, mammographic breast density, serum bioavailable estradiol and testosterone insulin-like growth factor-I and IGF-binding protein-3, and plasma lignan levels. Forty-five of 49 eligible women completed the study with excellent compliance (median = 96%) and few serious side effects (4% grade 3). Median plasma enterolactone increased ∼9-fold, and total lignans increased 16-fold. Thirty-six (80%) of the 45 evaluable subjects showed a decrease in Ki-67, from a median of 4% (range, 2-16.8%) to 2% (range, 0-15.2%; P < 0.001, Wilcoxon signed rank test). A decrease from baseline in the proportion of women with atypical cytology (P = 0.035) was also observed. Based on favorable risk biomarker modulation and lack of adverse events, we are initiating a randomized trial of SDG versus placebo in premenopausal women. Cancer Prev Res; 3(10); 1342–50. ©2010 AACR.


Biology of Blood and Marrow Transplantation | 2015

Vitamin D Deficiency and Survival in Children after Hematopoietic Stem Cell Transplant.

Gregory Wallace; Sonata Jodele; Jonathan C. Howell; Kasiani C. Myers; Ashley Teusink; Xueheng Zhao; Kenneth D. R. Setchell; Catherine Holtzapfel; Adam Lane; Cynthia B. Taggart; Benjamin L. Laskin; Stella M. Davies

Vitamin D has endocrine function as a key regulator of calcium absorption and bone homeostasis and also has intracrine function as an immunomodulator. Vitamin D deficiency before hematopoietic stem cell transplantation (HSCT) has been variably associated with higher risks of graft-versus-host disease (GVHD) and mortality. Children are at particular risk of growth impairment and bony abnormalities in the face of prolonged deficiency. There are few longitudinal studies of vitamin D deficient children receiving HSCT, and the prevalence and consequences of vitamin D deficiency 100 days after transplant has been poorly studied. Serum samples from 134 consecutive HSCT patients prospectively enrolled into an HSCT sample repository were tested for 25-hydroxy (25 OH) vitamin D levels before starting HSCT (baseline) and at 100 days after transplantation. Ninety-four of 134 patients (70%) had a vitamin D level < 30 ng/mL before HSCT, despite supplemental therapy in 16% of subjects. Post-transplant samples were available in 129 patients who survived to day 100 post-transplant. Vitamin D deficiency persisted in 66 of 87 patients (76%) who were already deficient before HSCT. Moreover, 24 patients with normal vitamin D levels before HSCT were vitamin D deficient by day 100. Overall, 68% of patients were vitamin D deficient (<30 ng/mL) at day 100, and one third of these cases had severe vitamin D deficiency (<20 ng/mL). Low vitamin D levels before HSCT were not associated with subsequent acute or chronic GVHD, contrary to some prior reports. However, severe vitamin D deficiency (<20 ng/mL) at 100 days post-HSCT was associated with decreased overall survival after transplantation (P = .044, 1-year rate of overall survival: 70% versus 84.1%). We conclude that all pediatric transplant recipients should be screened for vitamin D deficiency before HSCT and at day 100 post-transplant and that aggressive supplementation is needed to maintain sufficient levels.


Obesity | 2016

Fibroblast growth factor 21 correlates with weight loss after vertical sleeve gastrectomy in adolescents.

Farooq H. Khan; Lindsey Shaw; Wujuan Zhang; Rosa Maria Salazar Gonzalez; Sarah Mowery; Melissa Oehrle; Xueheng Zhao; Todd M. Jenkins; Kenneth D. R. Setchell; Thomas H. Inge; Rohit Kohli

Vertical sleeve gastrectomy (VSG) results in weight loss and increased bile acids (BA) and fibroblast growth factor 19 (FGF19) levels. FGF21 shares essential cofactors with FGF19, but its physiology early post‐VSG has not been assessed.


SLAS DISCOVERY: Advancing Life Sciences R&D | 2017

Tissue Localization of Glycosphingolipid Accumulation in a Gaucher Disease Mouse Brain by LC-ESI-MS/MS and High-Resolution MALDI Imaging Mass Spectrometry

E. Ellen Jones; Wujuan Zhang; Xueheng Zhao; Cristine Quiason; Stephanie Dale; Sheerin Shahidi-Latham; Gregory A. Grabowski; Kenneth D. R. Setchell; Richard R. Drake; Ying Sun

To better understand regional brain glycosphingolipid (GSL) accumulation in Gaucher disease (GD) and its relationship to neuropathology, a feasibility study using mass spectrometry and immunohistochemistry was conducted using brains derived from a GD mouse model (4L/PS/NA) homozygous for a mutant GCase (V394L [4L]) and expressing a prosaposin hypomorphic (PS-NA) transgene. Whole brains from GD and control animals were collected using one hemisphere for MALDI FTICR IMS analysis and the other for quantitation by LC-ESI-MS/MS. MALDI IMS detected several HexCers across the brains. Comparison with the brain hematoxylin and eosin (H&E) revealed differential signal distributions in the midbrain, brain stem, and CB of the GD brain versus the control. Quantitation of serial brain sections with LC-ESI-MS/MS supported the imaging results, finding the overall HexCer levels in the 4L/PS-NA brains to be four times higher than the control. LC-ESI-MS/MS also confirmed that the elevated hexosyl isomers were glucosylceramides rather than galactosylceramides. MALDI imaging also detected differential analyte distributions of lactosylceramide species and gangliosides in the 4L/PS-NA brain, which was validated by LC-ESI-MS/MS. Immunohistochemistry revealed regional inflammation, altered autophagy, and defective protein degradation correlating with regions of GSL accumulation, suggesting that specific GSLs may have distinct neuropathological effects.


Pediatric Research | 2017

Hepatic MDR3 expression impacts lipid homeostasis and susceptibility to inflammatory bile duct obstruction in neonates

Alexandra N. Carey; Wujuan Zhang; Kenneth D. R. Setchell; Julia Simmons; Tiffany Shi; Celine S. Lages; Mary P. Mullen; Kaitlin Carroll; Rebekah Karns; Kazuhiko Bessho; Rachel Sheridan; Xueheng Zhao; Susanne N Weber; Alexander Miethke

BackgroundHeterozygous mutations in the gene ABCB4, encoding the phospholipid floppase MDR3 (Mdr2 in mice), are associated with various chronic liver diseases. Here we hypothesize that reduced ABCB4 expression predisposes to extrahepatic biliary atresia (EHBA).MethodsLivers from neonatal wild-type (wt) and heterozygous Mdr2-deficient mice were subjected to mass spectrometry-based lipidomics and RNA sequencing studies. Following postnatal infection with rhesus rotavirus (RRV), liver immune responses and EHBA phenotype were assessed. Hepatic microarray data from 40 infants with EHBA were mined for expression levels of ABCB4.ResultsPhosphatidylcholine (PC) and phosphatidylethanolamine (PE) were increased, whereas the PC/PE ratio was decreased in neonatal Mdr2+/− mice compared with wt mice. Following RRV challenge, hepatic expression of IFNγ and infiltration with CD8+ and NK+ lymphocytes were increased in Mdr2+/− mice. Plasma total bilirubin levels and prevalence of complete ductal obstruction were higher in these mice. In infants with EHBA, hepatic gene expression of ABCB4 was downregulated in those with an inflammatory compared with a fibrosing molecular phenotype.ConclusionDecreased expression of ABCB4 causes dysregulation in (phospho)lipid homeostasis, and predisposes to aberrant pro-inflammatory lymphocyte responses and an aggravated phenotype of EHBA in neonatal mice. Downregulated ABCB4 is associated with an inflammatory transcriptome signature in infants with EHBA.


Pediatric Nephrology | 2016

Distinct urinary lipid profile in children with focal segmental glomerulosclerosis

Elif Erkan; Xueheng Zhao; Kenneth D. R. Setchell; Prasad Devarajan

BackgroundFocal segmental glomerulosclerosis (FSGS) accounts for the majority of new-onset end-stage renal disease (ESRD) during adolescence. FSGS treatment is a great challenge for pediatric nephrologists due to intertwined molecular pathways underlining its complex pathophysiology. There is emerging evidence showing that perturbed lipid metabolism plays a role in the pathophysiology of FSGS.MethodsWe postulate that the nephrotic milieu in FSGS differs from minimal change disease (MCD) and that urinary lipidomics can be used as a tool for early diagnosis of FSGS. We explored the urinary lipid profile of patients with FSGS and MCD using an unbiased metabolomics approach.ResultsWe discovered a unique lipid signature characterized by increased concentration of fatty acid (FA) and lysophosphatidylcholines (LPC) and a decrease in urinary concentration of phosphatidylcholine (PC) in patients with FSGS. These findings indicate increased metabolism of membrane phospholipid PC by phospholipase A2 (PLA2), resulting in higher urinary concentrations of LPC and FA.ConclusionsWe propose that increased PC by-products can be used as a biomarker to diagnose FSGS and shed light on the mechanism of tubular and podocyte damage. Validation of identified urinary lipids as a biomarker in predicting the diagnosis and progression of FSGS in a larger patient population is warranted.

Collaboration


Dive into the Xueheng Zhao's collaboration.

Top Co-Authors

Avatar

Kenneth D. R. Setchell

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nadine M. Brown

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Wujuan Zhang

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

James E. Heubi

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eileen C. King

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stephanie L. Lindley

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ying Sun

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Adam Lane

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ahmad Rayes

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Alexander Miethke

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge