Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth Gable is active.

Publication


Featured researches published by Kenneth Gable.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities

Gongshe Han; Sita D. Gupta; Kenneth Gable; Somashekarappa Niranjanakumari; Prasun Moitra; Florian Eichler; Robert H. Brown; Jeffrey M. Harmon; Teresa M. Dunn

Serine palmitoyltransferase (SPT) catalyzes the first committed step in sphingolipid biosynthesis. In yeast, SPT is composed of a heterodimer of 2 highly-related subunits, Lcb1p and Lcb2p, and a third subunit, Tsc3p, which increases enzyme activity markedly and is required for growth at elevated temperatures. Higher eukaryotic orthologs of Lcb1p and Lcb2p have been identified, but SPT activity is not highly correlated with coexpression of these subunits and no ortholog of Tsc3p has been identified. Here, we report the discovery of 2 proteins, ssSPTa and ssSPTb, which despite sharing no homology with Tsc3p, each substantially enhance the activity of mammalian SPT expressed in either yeast or mammalian cells and therefore define an evolutionarily conserved family of low molecular weight proteins that confer full enzyme activity. The 2 ssSPT isoforms share a conserved hydrophobic central domain predicted to reside in the membrane, and each interacts with both hLCB1 and hLCB2 as assessed by positive split ubiquitin 2-hybrid analysis. The presence of these small subunits, along with 2 hLCB2 isofoms, suggests that there are 4 distinct human SPT isozymes. When each SPT isozyme was expressed in either yeast or CHO LyB cells lacking endogenous SPT activity, characterization of their in vitro enzymatic activities, and long-chain base (LCB) profiling revealed differences in acyl-CoA preference that offer a potential explanation for the observed diversity of LCB seen in mammalian cells.


Journal of Biological Chemistry | 2010

Metabolic response to iron deficiency in Saccharomyces cerevisiae.

Minoo Shakoury-Elizeh; Olga Protchenko; Alvin Berger; James Cox; Kenneth Gable; Teresa M. Dunn; William A. Prinz; Martin Bard; Caroline C. Philpott

Iron is an essential cofactor for enzymes involved in numerous cellular processes, yet little is known about the impact of iron deficiency on cellular metabolism or iron proteins. Previous studies have focused on changes in transcript and proteins levels in iron-deficient cells, yet these changes may not reflect changes in transport activity or flux through a metabolic pathway. We analyzed the metabolomes and transcriptomes of yeast grown in iron-rich and iron-poor media to determine which biosynthetic processes are altered when iron availability falls. Iron deficiency led to changes in glucose metabolism, amino acid biosynthesis, and lipid biosynthesis that were due to deficiencies in specific iron-dependent enzymes. Iron-sulfur proteins exhibited loss of iron cofactors, yet amino acid synthesis was maintained. Ergosterol and sphingolipid biosynthetic pathways had blocks at points where heme and diiron enzymes function, whereas Ole1, the essential fatty acid desaturase, was resistant to iron depletion. Iron-deficient cells exhibited depletion of most iron enzyme activities, but loss of activity during iron deficiency did not consistently disrupt metabolism. Amino acid homeostasis was robust, but iron deficiency impaired lipid synthesis, altering the properties and functions of cellular membranes.


Journal of Biological Chemistry | 2006

Members of the Arabidopsis FAE1-like 3-Ketoacyl-CoA Synthase Gene Family Substitute for the Elop Proteins of Saccharomyces cerevisiae

Shilpi Paul; Kenneth Gable; Frédéric Beaudoin; Edgar B. Cahoon; Jan G. Jaworski; Johnathan A. Napier; Teresa M. Dunn

Several 3-keto-synthases have been studied, including the soluble fatty acid synthases, those involved in polyketide synthesis, and the FAE1-like 3-ketoacyl-CoA synthases. All of these condensing enzymes have a common ancestor and an enzymatic mechanism that involves a catalytic triad consisting of Cys, His, and His/Asn. In contrast to the FAE1-like family of enzymes that mediate plant microsomal fatty acid elongation, the condensation step of elongation in animals and in fungi appears to be mediated by the Elop homologs. Curiously these proteins bear no resemblance to the well characterized 3-keto-synthases. There are three ELO genes in yeast that encode the homologous Elo1p, Elo2p, and Elo3p proteins. Elo2p and Elo3p are required for synthesis of the very long-chain fatty acids, and mutants lacking both Elo2p and Elo3p are inviable confirming that the very long-chain fatty acids are essential for cellular functions. In this study we show that heterologous expression of several Arabidopsis FAE1-like genes rescues the lethality of an elo2Δelo3Δ yeast mutant. We further demonstrate that FAE1 acts in conjunction with the 3-keto and trans-2,3-enoyl reductases of the elongase system. These studies indicate that even though the plant-specific FAE1 family of condensing enzymes evolved independently of the Elop family of condensing enzymes, they utilize the same reductases and presumably dehydratase that the Elop proteins rely upon.


The Plant Cell | 2011

Sphingolipids in the Root Play an Important Role in Regulating the Leaf Ionome in Arabidopsis thaliana

Dai-Yin Chao; Kenneth Gable; Ming Chen; Ivan Baxter; Charles R. Dietrich; Edgar B. Cahoon; Mary Lou Guerinot; Brett Lahner; Shiyou Lü; Jonathan E. Markham; Joe Morrissey; Gongshe Han; Sita D. Gupta; Jeffrey M. Harmon; Jan G. Jaworski; Teresa M. Dunn; David E. Salt

Sphingolipids are a diverse group of essential membrane lipids thought to play important roles in both membrane function and cellular signaling. By identifying an Arabidopsis thaliana mutant lacking 3-ketodihydrosphinganine reductase, a critical enzyme in sphingolipid biosynthesis, this work uncovers a connection between sphingolipid metabolism in roots and whole-plant mineral ion homeostasis. Sphingolipid synthesis is initiated by condensation of Ser with palmitoyl-CoA producing 3-ketodihydrosphinganine (3-KDS), which is reduced by a 3-KDS reductase to dihydrosphinganine. Ser palmitoyltransferase is essential for plant viability. Arabidopsis thaliana contains two genes (At3g06060/TSC10A and At5g19200/TSC10B) encoding proteins with significant similarity to the yeast 3-KDS reductase, Tsc10p. Heterologous expression in yeast of either Arabidopsis gene restored 3-KDS reductase activity to the yeast tsc10Δ mutant, confirming both as bona fide 3-KDS reductase genes. Consistent with sphingolipids having essential functions in plants, double mutant progeny lacking both genes were not recovered from crosses of single tsc10A and tsc10B mutants. Although the 3-KDS reductase genes are functionally redundant and ubiquitously expressed in Arabidopsis, 3-KDS reductase activity was reduced to 10% of wild-type levels in the loss-of-function tsc10a mutant, leading to an altered sphingolipid profile. This perturbation of sphingolipid biosynthesis in the Arabidopsis tsc10a mutant leads an altered leaf ionome, including increases in Na, K, and Rb and decreases in Mg, Ca, Fe, and Mo. Reciprocal grafting revealed that these changes in the leaf ionome are driven by the root and are associated with increases in root suberin and alterations in Fe homeostasis.


Journal of Biological Chemistry | 2010

A Disease-causing Mutation in the Active Site of Serine Palmitoyltransferase Causes Catalytic Promiscuity

Kenneth Gable; Sita D. Gupta; Gongshe Han; Somashekarappa Niranjanakumari; Jeffrey M. Harmon; Teresa M. Dunn

The autosomal dominant peripheral sensory neuropathy HSAN1 results from mutations in the LCB1 subunit of serine palmitoyltransferase (SPT). Serum from patients and transgenic mice expressing a disease-causing mutation (C133W) contain elevated levels of 1-deoxysphinganine (1-deoxySa), which presumably arise from inappropriate condensation of alanine with palmitoyl-CoA. Mutant heterodimeric SPT is catalytically inactive. However, mutant heterotrimeric SPT has ∼10–20% of wild-type activity and supports growth of yeast cells lacking endogenous SPT. In addition, long chain base profiling revealed the synthesis of significantly more 1-deoxySa in yeast and mammalian cells expressing the heterotrimeric mutant enzyme than in cells expressing wild-type enzyme. Wild-type and mutant enzymes had similar affinities for serine. Surprisingly, the enzymes also had similar affinities for alanine, indicating that the major affect of the C133W mutation is to enhance activation of alanine for condensation with the acyl-CoA substrate. In vivo synthesis of 1-deoxySa by the mutant enzyme was proportional to the ratio of alanine to serine in the growth media, suggesting that this ratio can be used to modulate the relative synthesis of sphinganine and 1-deoxySa. By expressing SPT as a single-chain fusion protein to ensure stoichiometric expression of all three subunits, we showed that GADD153, a marker for endoplasmic reticulum stress, was significantly elevated in cells expressing mutant heterotrimers. GADD153 was also elevated in cells treated with 1-deoxySa. Taken together, these data indicate that the HSAN1 mutations perturb the active site of SPT resulting in a gain of function that is responsible for the HSAN1 phenotype.


Biochimica et Biophysica Acta | 1985

Effect of halothane on Ca2+-induced Ca2+ release from sarcoplasmic reticulum vesicles isolated from rat skeletal muscle

Troy Beeler; Kenneth Gable

Halothane induces the release of Ca2+ from a subpopulation of sarcoplasmic reticulum vesicles that are derived from the terminal cisternae of rat skeletal muscle. Halothane-induced Ca2+ release appears to be an enhancement of Ca2+-induced Ca2+ release. The low-density sarcoplasmic reticulum vesicles which are believed to be derived from nonjunctional sarcoplasmic reticulum lack the capability of both Ca2+-induced and halothane-induced Ca2+ release. Ca2+ release from terminal cisternae vesicles induced by halothane is inhibited by Ruthenium red and Mg2+, and require ATP (or an ATP analogue), KCl (or similar salt) and extravesicular Ca2+. Ca2+-induced Ca2+ release has similar characteristics.


Archives of Biochemistry and Biophysics | 1985

Comparison of the rat microsomal Mg-ATPase of various tissues.

Troy Beeler; Theresa Wang; Kenneth Gable; Shirley Lee

The microsomal Mg-ATPase from various rat tissues was compared. After fractionating the microsomal vesicles by sucrose gradient centrifugation, the highest specific activity of the Mg-ATPase was found in the low-density vesicles which contained plasma membrane. A large fraction (25-90%) of the microsomal Ca-independent Mg-ATPase found in each tissue had the following properties: (1) the Km for ATP was 0.2 mM; (2) the rate of ATP hydrolysis by the Mg-ATPase was nonlinear due to an ATP-stimulated inactivation of the enzyme; (3) wheat germ agglutinin, concanavalin A, glutaraldehyde, and antiserum prevented inactivation induced by ATP or AdoPP[NH]P; (4) detergents at relatively low detergent:protein ratios increased the rate of inactivation with little change in the initial rate of ATP hydrolysis; (5) the Mg-ATPase was inactivated by irradiation in the presence of 8-azido ATP. (6) in addition to ATP, the Mg-ATPase was able to hydrolyze CTP, GTP, UTP, ITP, and GTP but was unable to hydrolyze any of the 10 nonnucleotide phosphocompounds which were tested; (7) the bivalent cation requirement of the Mg-ATPase could be provided by Mg2+, Ca2+, Mn2+, Zn2+, or Co2+ but the enzyme was inactive in the presence of Cu2+, Sr2+, Ba2+, or Be2+; (8) the Mg-ATPase activity was not altered by ionophores or inhibitors of the Na,K-ATPase, the Ca,Mg-ATPase or the mitochondrial F1ATPase. These data suggest that a major portion of the microsomal, basal Mg-ATPase activity is due to one unique enzyme found in most if not all tissues.


Cell Reports | 2013

TORC1 inhibits GSK3-mediated Elo2 phosphorylation to regulate very long chain fatty acid synthesis and autophagy.

Christine Zimmermann; Aline X.S. Santos; Kenneth Gable; Sharon Epstein; Charulatha Gururaj; Pierre Chymkowitch; Dennis Pultz; Steven Vestergaard Rødkær; Lorena Clay; Magnar Bjørås; Yves Barral; Amy Chang; Nils J. Færgeman; Teresa M. Dunn; Howard Riezman; Jorrit M. Enserink

Very long chain fatty acids (VLCFAs) are essential fatty acids with multiple functions, including ceramide synthesis. Although the components of the VLCFA biosynthetic machinery have been elucidated, how their activity is regulated to meet the cells metabolic demand remains unknown. The goal of this study was to identify mechanisms that regulate the rate of VLCFA synthesis, and we discovered that the fatty acid elongase Elo2 is regulated by phosphorylation. Elo2 phosphorylation is induced upon inhibition of TORC1 and requires GSK3. Expression of nonphosphorylatable Elo2 profoundly alters the ceramide spectrum, reflecting aberrant VLCFA synthesis. Furthermore, VLCFA depletion results in constitutive activation of autophagy, which requires sphingoid base phosphorylation. This constitutive activation of autophagy diminishes cell survival, indicating that VLCFAs serve to dampen the amplitude of autophagy. Together, our data reveal a function for TORC1 and GSK3 in the regulation of VLCFA synthesis that has important implications for autophagy and cell homeostasis.


Journal of Biological Chemistry | 2007

A six-membrane-spanning topology for yeast and Arabidopsis Tsc13p, the enoyl reductases of the microsomal fatty acid elongating system.

Shilpi Paul; Kenneth Gable; Teresa M. Dunn

The very long chain fatty acids are crucial building blocks of essential lipids, most notably the sphingolipids. These elongated fatty acids are synthesized by a system of enzymes that are organized in a complex within the endoplasmic reticulum membrane. Although several of the components of the elongase complex have recently been identified, little is known about how these proteins are organized within the membrane or about how they interact with one another during fatty acid elongation. In this study the topology of Tsc13p, the enoyl reductase of the elongase system, was investigated. The N and C termini of Tsc13p reside in the cytoplasm, and six putative membrane-spanning domains were identified by insertion of glycosylation and factor Xa cleavage sites at various positions. The N-terminal domain including the first membrane-spanning segment contains sufficient information for targeting to the endoplasmic reticulum membrane. Studies of the Arabidopsis Tsc13p protein revealed a similar topology. Highly conserved domains of the Tsc13p proteins that are likely to be important for enzymatic activity lie on the cytosolic face of the endoplasmic reticulum, possibly partially embedded within the membrane.


Journal of Biological Chemistry | 2013

Topological and Functional Characterization of the ssSPTs, Small Activating Subunits of Serine Palmitoyltransferase

Jeffrey M. Harmon; Dagmar Bacikova; Kenneth Gable; Sita D. Gupta; Gongshe Han; Nivedita Sengupta; Niranjanakumari Somashekarappa; Teresa M. Dunn

Background: The ssSPTs activate serine palmitoyltransferase and specify its acyl-CoA selectivity. Results: Both properties are contained within a 33-amino acid core that spans the membrane. Conclusion: A single amino acid difference between ssSPTa and ssSPTb is responsible for the acyl-CoA preference of heterotrimers containing each isoform. Significance: The ssSPTs are critical regulatory components of the rate-limiting enzyme in sphingolipid biosynthesis. The topological and functional organization of the two isoforms of the small subunits of human serine palmitoyltransferase (hssSPTs) that activate the catalytic hLCB1/hLCB2 heterodimer was investigated. A variety of experimental approaches placed the N termini of the ssSPTs in the cytosol, their C termini in the lumen, and showed that they contain a single transmembrane domain. Deletion analysis revealed that the ability to activate the heterodimer is contained in a conserved 33-amino acid core domain that has the same membrane topology as the full-length protein. In combination with analysis of isoform chimera and site-directed mutagenesis, a single amino acid residue in this core (Met25 in ssSPTa and Val25 in ssSPTb) was identified which confers specificity for palmitoyl- or stearoyl-CoA, respectively, in both yeast and mammalian cells. This same residue also determines which isoform is a better activator of a mutant heterodimer, hLCB1S331F/hLCB2a, which has increased basal SPT activity and decreased amino acid substrate selectivity. This suggests that the role of the ssSPTs is to increase SPT activity without compromising substrate specificity. In addition, the observation that the C-terminal domains of ssSPTa and ssSPTb, which are highly conserved within each subfamily but are the most divergent regions between isoform subfamilies, are not required for activation of the heterodimer or for acyl-CoA selectivity suggests that the ssSPTs have additional roles that remain to be discovered.

Collaboration


Dive into the Kenneth Gable's collaboration.

Top Co-Authors

Avatar

Teresa M. Dunn

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Troy Beeler

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Gongshe Han

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Sita D. Gupta

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Harmon

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Amy Chang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dagmar Bacikova

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Edgar B. Cahoon

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge