Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gongshe Han is active.

Publication


Featured researches published by Gongshe Han.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities

Gongshe Han; Sita D. Gupta; Kenneth Gable; Somashekarappa Niranjanakumari; Prasun Moitra; Florian Eichler; Robert H. Brown; Jeffrey M. Harmon; Teresa M. Dunn

Serine palmitoyltransferase (SPT) catalyzes the first committed step in sphingolipid biosynthesis. In yeast, SPT is composed of a heterodimer of 2 highly-related subunits, Lcb1p and Lcb2p, and a third subunit, Tsc3p, which increases enzyme activity markedly and is required for growth at elevated temperatures. Higher eukaryotic orthologs of Lcb1p and Lcb2p have been identified, but SPT activity is not highly correlated with coexpression of these subunits and no ortholog of Tsc3p has been identified. Here, we report the discovery of 2 proteins, ssSPTa and ssSPTb, which despite sharing no homology with Tsc3p, each substantially enhance the activity of mammalian SPT expressed in either yeast or mammalian cells and therefore define an evolutionarily conserved family of low molecular weight proteins that confer full enzyme activity. The 2 ssSPT isoforms share a conserved hydrophobic central domain predicted to reside in the membrane, and each interacts with both hLCB1 and hLCB2 as assessed by positive split ubiquitin 2-hybrid analysis. The presence of these small subunits, along with 2 hLCB2 isofoms, suggests that there are 4 distinct human SPT isozymes. When each SPT isozyme was expressed in either yeast or CHO LyB cells lacking endogenous SPT activity, characterization of their in vitro enzymatic activities, and long-chain base (LCB) profiling revealed differences in acyl-CoA preference that offer a potential explanation for the observed diversity of LCB seen in mammalian cells.


Journal of Biological Chemistry | 2002

The saccharomyces cerevisiae YBR159w gene encodes the 3-ketoreductase of the microsomal fatty acid elongase

Gongshe Han; Ken Gable; Sepp D. Kohlwein; Frédéric Beaudoin; Johnathan A. Napier; Teresa M. Dunn

The YBR159w gene encodes the major 3-ketoreductase activity of the elongase system of enzymes required for very long-chain fatty acid (VLCFA) synthesis. Mutants lacking the YBR159w gene display many of the phenotypes that have previously been described for mutants with defects in fatty acid elongation. These phenotypes include reduced VLCFA synthesis, accumulation of high levels of dihydrosphingosine and phytosphingosine, and accumulation of medium-chain ceramides. In vitroelongation assays confirm that the ybr159Δ mutant is deficient in the reduction of the 3-ketoacyl intermediates of fatty acid elongation. The ybr159Δ mutant also displays reduced dehydration of the 3-OH acyl intermediates of fatty acid elongation, suggesting that Ybr159p is required for the stability or function of the dehydratase activity of the elongase system. Green fluorescent protein-tagged Ybr159p co-localizes and co-immunoprecipitates with other elongating enzymes, Elo3p and Tsc13p. Whereas VLCFA synthesis is essential for viability, the ybr159Δ mutant cells are viable (albeit very slowly growing) and do synthesize some VLCFA. This suggested that a functional ortholog of Ybr159p exists that is responsible for the residual 3-ketoreductase activity. By disrupting the orthologs of Ybr159w in the ybr159Δmutant we found that the ybr159Δayr1Δ double mutant was inviable, suggesting that Ayr1p is responsible for the residual 3-ketoreductase activity.


The Plant Cell | 2006

The Essential Nature of Sphingolipids in Plants as Revealed by the Functional Identification and Characterization of the Arabidopsis LCB1 Subunit of Serine Palmitoyltransferase

Ming Chen; Gongshe Han; Charles R. Dietrich; Teresa M. Dunn; Edgar B. Cahoon

Serine palmitoyltransferase (SPT) catalyzes the first step of sphingolipid biosynthesis. In yeast and mammalian cells, SPT is a heterodimer that consists of LCB1 and LCB2 subunits, which together form the active site of this enzyme. We show that the predicted gene for Arabidopsis thaliana LCB1 encodes a genuine subunit of SPT that rescues the sphingolipid long-chain base auxotrophy of Saccharomyces cerevisiae SPT mutants when coexpressed with Arabidopsis LCB2. In addition, homozygous T-DNA insertion mutants for At LCB1 were not recoverable, but viability was restored by complementation with the wild-type At LCB1 gene. Furthermore, partial RNA interference (RNAi) suppression of At LCB1 expression was accompanied by a marked reduction in plant size that resulted primarily from reduced cell expansion. Sphingolipid content on a weight basis was not changed significantly in the RNAi suppression plants, suggesting that plants compensate for the downregulation of sphingolipid synthesis by reduced growth. At LCB1 RNAi suppression plants also displayed altered leaf morphology and increases in relative amounts of saturated sphingolipid long-chain bases. These results demonstrate that plant SPT is a heteromeric enzyme and that sphingolipids are essential components of plant cells and contribute to growth and development.


Journal of Biological Chemistry | 2002

Mutations in the yeast LCB1 and LCB2 genes, including those corresponding to the hereditary sensory neuropathy type I mutations, dominantly inactivate serine palmitoyltransferase

Ken Gable; Gongshe Han; Erin Monaghan; Dagmar Bacikova; Mukil Natarajan; Robert W. Williams; Teresa M. Dunn

It was recently demonstrated that mutations in the human SPTLC1 gene, encoding the Lcb1p subunit of serine palmitoyltransferase (SPT), cause hereditary sensory neuropathy type I (1, 2). As a member of the subfamily of pyridoxal 5′-phosphate enzymes known as the α-oxoamine synthases, serine palmitoyltransferase catalyzes the committed step of sphingolipid synthesis. The residues that are mutated to cause hereditary sensory neuropathy type I reside in a highly conserved region of Lcb1p that is predicted to be a catalytic domain of Lcb1p on the basis of alignments with other members of the α-oxoamine synthase family. We found that the corresponding mutations in the LCB1 gene ofSaccharomyces cerevisiae reduce serine palmitoyltransferase activity. These mutations are dominant and decrease serine palmitoyltransferase activity by 50% when the wild-type and mutantLCB1 alleles are coexpressed. We also show that serine palmitoyltransferase is an Lcb1p·Lcb2p heterodimer and that the mutated Lcb1p proteins retain their ability to interact with Lcb2p. Modeling studies suggest that serine palmitoyltransferase is likely to have a single active site that lies at the Lcb1p·Lcb2p interface and that the mutations in Lcb1p reside near the lysine in Lcb2p that is expected to form the Schiffs base with the pyridoxal 5′-phosphate cofactor. Furthermore, mutations in this lysine and in a histidine residue that is also predicted to be important for pyridoxal 5′-phosphate binding to Lcb2p also dominantly inactivate SPT similar to the hereditary sensory neuropathy type 1-like mutations in Lcb1p.


Plant Journal | 2008

Loss‐of‐function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability

Charles R. Dietrich; Gongshe Han; Ming Chen; R. Howard Berg; Teresa M. Dunn; Edgar B. Cahoon

Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis, and downregulation of this enzyme provides a means for exploring sphingolipid function in cells. We have previously demonstrated that Arabidopsis SPT requires LCB1 and LCB2 subunits for activity, as is the case in other eukaryotes. In this study, we show that Arabidopsis has two genes (AtLCB2a and AtLCB2b) that encode functional isoforms of the LCB2 subunit. No alterations in sphingolipid content or growth were observed in T-DNA mutants for either gene, but homozygous double mutants were not recoverable, suggesting that these genes are functionally redundant. Reciprocal crosses conducted with Atlcb2a and Atlcb2b mutants indicated that lethality is associated primarily with the inability to transmit the lcb2 null genotype through the haploid pollen. Consistent with this, approximately 50% of the pollen obtained from plants homozygous for a mutation in one gene and heterozygous for a mutation in the second gene arrested during transition from uni-nucleate microspore to bicellular pollen. Ultrastructural analyses revealed that these pollen grains contained aberrant endomembranes and lacked an intine layer. To examine sphingolipid function in sporophytic cells, Arabidopsis lines were generated that allowed inducible RNAi silencing of AtLCB2b in an Atlcb2a mutant background. Studies conducted with these lines demonstrated that sphingolipids are essential throughout plant development, and that lethality resulting from LCB2 silencing in seedlings could be partially rescued by supplying exogenous long-chain bases. Overall, these studies provide insights into the genetic and biochemical properties of SPT and sphingolipid function in Arabidopsis.


The Plant Cell | 2011

Sphingolipids in the Root Play an Important Role in Regulating the Leaf Ionome in Arabidopsis thaliana

Dai-Yin Chao; Kenneth Gable; Ming Chen; Ivan Baxter; Charles R. Dietrich; Edgar B. Cahoon; Mary Lou Guerinot; Brett Lahner; Shiyou Lü; Jonathan E. Markham; Joe Morrissey; Gongshe Han; Sita D. Gupta; Jeffrey M. Harmon; Jan G. Jaworski; Teresa M. Dunn; David E. Salt

Sphingolipids are a diverse group of essential membrane lipids thought to play important roles in both membrane function and cellular signaling. By identifying an Arabidopsis thaliana mutant lacking 3-ketodihydrosphinganine reductase, a critical enzyme in sphingolipid biosynthesis, this work uncovers a connection between sphingolipid metabolism in roots and whole-plant mineral ion homeostasis. Sphingolipid synthesis is initiated by condensation of Ser with palmitoyl-CoA producing 3-ketodihydrosphinganine (3-KDS), which is reduced by a 3-KDS reductase to dihydrosphinganine. Ser palmitoyltransferase is essential for plant viability. Arabidopsis thaliana contains two genes (At3g06060/TSC10A and At5g19200/TSC10B) encoding proteins with significant similarity to the yeast 3-KDS reductase, Tsc10p. Heterologous expression in yeast of either Arabidopsis gene restored 3-KDS reductase activity to the yeast tsc10Δ mutant, confirming both as bona fide 3-KDS reductase genes. Consistent with sphingolipids having essential functions in plants, double mutant progeny lacking both genes were not recovered from crosses of single tsc10A and tsc10B mutants. Although the 3-KDS reductase genes are functionally redundant and ubiquitously expressed in Arabidopsis, 3-KDS reductase activity was reduced to 10% of wild-type levels in the loss-of-function tsc10a mutant, leading to an altered sphingolipid profile. This perturbation of sphingolipid biosynthesis in the Arabidopsis tsc10a mutant leads an altered leaf ionome, including increases in Na, K, and Rb and decreases in Mg, Ca, Fe, and Mo. Reciprocal grafting revealed that these changes in the leaf ionome are driven by the root and are associated with increases in root suberin and alterations in Fe homeostasis.


Journal of Biological Chemistry | 2010

A Disease-causing Mutation in the Active Site of Serine Palmitoyltransferase Causes Catalytic Promiscuity

Kenneth Gable; Sita D. Gupta; Gongshe Han; Somashekarappa Niranjanakumari; Jeffrey M. Harmon; Teresa M. Dunn

The autosomal dominant peripheral sensory neuropathy HSAN1 results from mutations in the LCB1 subunit of serine palmitoyltransferase (SPT). Serum from patients and transgenic mice expressing a disease-causing mutation (C133W) contain elevated levels of 1-deoxysphinganine (1-deoxySa), which presumably arise from inappropriate condensation of alanine with palmitoyl-CoA. Mutant heterodimeric SPT is catalytically inactive. However, mutant heterotrimeric SPT has ∼10–20% of wild-type activity and supports growth of yeast cells lacking endogenous SPT. In addition, long chain base profiling revealed the synthesis of significantly more 1-deoxySa in yeast and mammalian cells expressing the heterotrimeric mutant enzyme than in cells expressing wild-type enzyme. Wild-type and mutant enzymes had similar affinities for serine. Surprisingly, the enzymes also had similar affinities for alanine, indicating that the major affect of the C133W mutation is to enhance activation of alanine for condensation with the acyl-CoA substrate. In vivo synthesis of 1-deoxySa by the mutant enzyme was proportional to the ratio of alanine to serine in the growth media, suggesting that this ratio can be used to modulate the relative synthesis of sphinganine and 1-deoxySa. By expressing SPT as a single-chain fusion protein to ensure stoichiometric expression of all three subunits, we showed that GADD153, a marker for endoplasmic reticulum stress, was significantly elevated in cells expressing mutant heterotrimers. GADD153 was also elevated in cells treated with 1-deoxySa. Taken together, these data indicate that the HSAN1 mutations perturb the active site of SPT resulting in a gain of function that is responsible for the HSAN1 phenotype.


Journal of Biological Chemistry | 2004

The Topology of the Lcb1p Subunit of Yeast Serine Palmitoyltransferase

Gongshe Han; Ken Gable; Lianying Yan; Mukil Natarajan; Jayasree Krishnamurthy; Sita D. Gupta; Anna Borovitskaya; Jeffrey M. Harmon; Teresa M. Dunn

The structural organization and topology of the Lcb1p subunit of yeast and mammalian serine palmitoyltransferases (SPT) were investigated. In the yeast protein, three membrane-spanning domains were identified by insertion of glycosylation and factor Xa cleavage sites at various positions. The first domain of the yeast protein, located between residues 50 and 84, was not required for the stability, membrane association, interaction with Lcb2p, or enzymatic activity. Deletion of the comparable domain of the mammalian protein SPTLC1 also had little effect on its function, demonstrating that this region is not required for membrane localization or heterodimerization with SPTLC2. The second and third membrane-spanning domains of yeast Lcb1p, located between residues 342 and 371 and residues 425 and 457, respectively, create a luminal loop of ∼60 residues. In contrast to the first membrane-spanning domain, the second and third membrane-spanning domains were both required for Lcb1p stability. In addition, mutations in the luminal loop destabilized the SPT heterodimer indicating that this region of the protein is important for SPT structure and function. Mutations in the extreme carboxyl-terminal region of Lcb1p also disrupted heterodimer formation. Taken together, these data suggest that in contrast to other members of the α-oxoamine synthases that are soluble homodimers, the Lcb1p and Lcb2p subunits of the SPT heterodimer may interact in the cytosol, as well as within the membrane and/or the lumen of the endoplasmic reticulum.


Journal of Biological Chemistry | 2006

Expression of a Novel Marine Viral Single-chain Serine Palmitoyltransferase and Construction of Yeast and Mammalian Single-chain Chimera

Gongshe Han; Kennerth Gable; Lianying Yan; Michael J. Allen; William H. Wilson; Prasun Moitra; Jeffrey M. Harmon; Teresa M. Dunn

The genus Coccolithovirus is a recently discovered group of viruses that infect the globally important marine calcifying microalga Emiliania huxleyi. Surprisingly, the viral genome contains a cluster of putative sphingolipid biosynthetic genes not found in other viral genus. To address the role of these genes in viral pathogenesis, the ehv050 gene predicted to encode a serine palmitoyltransferase (SPT), the first and rate-limiting enzyme of sphingolipid biosynthesis, was expressed and characterized in Saccharomyces cerevisiae. We show that the encoded protein is indeed a fully functional, endoplasmic reticulum-localized, single-chain SPT. In eukaryotes SPT is a heterodimer comprised of long chain base 1 (LCB1) and LCB2 subunits. Sequence alignment and mutational analysis showed that the N-terminal domain of the viral protein most closely resembled the LCB2 subunit and the C-terminal domain most closely resembled the LCB1 subunit. Regardless of whether the viral protein was expressed as a single polypeptide or as two independent domains, it exhibited an unusual preference for myristoyl-CoA rather than palmitoyl-CoA. This preference was reflected by the increased presence of C16-sphingoid bases in yeast cells expressing the viral protein. The occurrence of a single-chain SPT suggested to us that it might be possible to create other fusion SPTs with unique properties. Remarkably, when the two subunits of the yeast SPT were thus expressed, the single-chain chimera was functional and displayed a novel substrate preference. This suggests that expression of other multisubunit membrane proteins as single-chain chimera could provide a powerful approach to the characterization of integral membrane proteins.


The Plant Cell | 2013

Arabidopsis 56–Amino Acid Serine Palmitoyltransferase-Interacting Proteins Stimulate Sphingolipid Synthesis, Are Essential, and Affect Mycotoxin Sensitivity

Athen N. Kimberlin; Saurav Majumder; Gongshe Han; Ming Chen; Rebecca E. Cahoon; Julie M. Stone; Teresa M. Dunn; Edgar B. Cahoon

Ser palmitoyltransfersase (SPT) regulation of sphingolipid homeostasis is critical for mediating plant growth and programmed cell death (PCD). As key components of this regulation, two 56–amino acid SPT-interacting proteins are shown to be essential for male gametophyte viability, and altered expression strongly affects SPT activity and sensitivity to the PCD-inducing mycotoxin fumonisin B1. Maintenance of sphingolipid homeostasis is critical for cell growth and programmed cell death (PCD). Serine palmitoyltransferase (SPT), composed of LCB1 and LCB2 subunits, catalyzes the primary regulatory point for sphingolipid synthesis. Small subunits of SPT (ssSPT) that strongly stimulate SPT activity have been identified in mammals, but the role of ssSPT in eukaryotic cells is unclear. Candidate Arabidopsis thaliana ssSPTs, ssSPTa and ssSPTb, were identified and characterized. Expression of these 56–amino acid polypeptides in a Saccharomyces cerevisiae SPT null mutant stimulated SPT activity from the Arabidopsis LCB1/LCB2 heterodimer by >100-fold through physical interaction with LCB1/LCB2. ssSPTa transcripts were more enriched in all organs and >400-fold more abundant in pollen than ssSPTb transcripts. Accordingly, homozygous ssSPTa T-DNA mutants were not recoverable, and 50% nonviable pollen was detected in heterozygous ssspta mutants. Pollen viability was recovered by expression of wild-type ssSPTa or ssSPTb under control of the ssSPTa promoter, indicating ssSPTa and ssSPTb functional redundancy. SPT activity and sensitivity to the PCD-inducing mycotoxin fumonisin B1 (FB1) were increased by ssSPTa overexpression. Conversely, SPT activity and FB1 sensitivity were reduced in ssSPTa RNA interference lines. These results demonstrate that ssSPTs are essential for male gametophytes, are important for FB1 sensitivity, and limit sphingolipid synthesis in planta.

Collaboration


Dive into the Gongshe Han's collaboration.

Top Co-Authors

Avatar

Teresa M. Dunn

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Harmon

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Kenneth Gable

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Sita D. Gupta

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Edgar B. Cahoon

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Ming Chen

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Charles R. Dietrich

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Dagmar Bacikova

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Ken Gable

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Prasun Moitra

Uniformed Services University of the Health Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge