Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth H. Nealson is active.

Publication


Featured researches published by Kenneth H. Nealson.


PLOS Biology | 2007

The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific

Douglas B. Rusch; Aaron L. Halpern; Granger Sutton; Karla B. Heidelberg; Shannon J. Williamson; Shibu Yooseph; Dongying Wu; Jonathan A. Eisen; Jeff Hoffman; Karin A. Remington; Karen Beeson; Bao Duc Tran; Hamilton O. Smith; Holly Baden-Tillson; Clare Stewart; Joyce Thorpe; Jason Freeman; Cynthia Andrews-Pfannkoch; Joseph E. Venter; Kelvin Li; Saul Kravitz; John F. Heidelberg; Terry Utterback; Yu-Hui Rogers; Luisa I. Falcón; Valeria Souza; Germán Bonilla-Rosso; Luis E. Eguiarte; David M. Karl; Shubha Sathyendranath

The worlds oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine) water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples, collected across a several-thousand km transect from the North Atlantic through the Panama Canal and ending in the South Pacific yielded an extensive dataset consisting of 7.7 million sequencing reads (6.3 billion bp). Though a few major microbial clades dominate the planktonic marine niche, the dataset contains great diversity with 85% of the assembled sequence and 57% of the unassembled data being unique at a 98% sequence identity cutoff. Using the metadata associated with each sample and sequencing library, we developed new comparative genomic and assembly methods. One comparative genomic method, termed “fragment recruitment,” addressed questions of genome structure, evolution, and taxonomic or phylogenetic diversity, as well as the biochemical diversity of genes and gene families. A second method, termed “extreme assembly,” made possible the assembly and reconstruction of large segments of abundant but clearly nonclonal organisms. Within all abundant populations analyzed, we found extensive intra-ribotype diversity in several forms: (1) extensive sequence variation within orthologous regions throughout a given genome; despite coverage of individual ribotypes approaching 500-fold, most individual sequencing reads are unique; (2) numerous changes in gene content some with direct adaptive implications; and (3) hypervariable genomic islands that are too variable to assemble. The intra-ribotype diversity is organized into genetically isolated populations that have overlapping but independent distributions, implying distinct environmental preference. We present novel methods for measuring the genomic similarity between metagenomic samples and show how they may be grouped into several community types. Specific functional adaptations can be identified both within individual ribotypes and across the entire community, including proteorhodopsin spectral tuning and the presence or absence of the phosphate-binding gene PstS.


Science | 1988

Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron Acceptor

Charles R. Myers; Kenneth H. Nealson

Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Animals in a bacterial world, a new imperative for the life sciences

Margaret J. McFall-Ngai; Michael G. Hadfield; Thomas C. G. Bosch; Hannah V. Carey; Tomislav Domazet-Lošo; Angela E. Douglas; Nicole Dubilier; Gérard Eberl; Tadashi Fukami; Scott F. Gilbert; Ute Hentschel; Nicole King; Staffan Kjelleberg; Andrew H. Knoll; Natacha Kremer; Sarkis K. Mazmanian; Jessica L. Metcalf; Kenneth H. Nealson; Naomi E. Pierce; John F. Rawls; Ann H. Reid; Edward G. Ruby; Mary E. Rumpho; Jon G. Sanders; Diethard Tautz; Jennifer J. Wernegreen

In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal–bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other’s genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal–bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world.


Nature Biotechnology | 2002

Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis

John F. Heidelberg; Ian T. Paulsen; Karen E. Nelson; Eric J. Gaidos; William C. Nelson; Timothy D. Read; Jonathan A. Eisen; Rekha Seshadri; Naomi L. Ward; Barbara Methe; Rebecca A. Clayton; Terry Meyer; Alexandre S. Tsapin; James Scott; Maureen J. Beanan; Lauren M Brinkac; Sean C. Daugherty; Robert T. DeBoy; Robert J. Dodson; A. Scott Durkin; Daniel H. Haft; James F. Kolonay; Ramana Madupu; Jeremy Peterson; Lowell Umayam; Owen White; Alex M. Wolf; Jessica Vamathevan; Janice Weidman; Marjorie Impraim

Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities, conferred in part by multicomponent, branched electron transport systems. Here we report the sequencing of the S. oneidensis genome, which consists of a 4,969,803–base pair circular chromosome with 4,758 predicted protein-encoding open reading frames (CDS) and a 161,613–base pair plasmid with 173 CDSs. We identified the first Shewanella lambda-like phage, providing a potential tool for further genome engineering. Genome analysis revealed 39 c-type cytochromes, including 32 previously unidentified in S. oneidensis, and a novel periplasmic [Fe] hydrogenase, which are integral members of the electron transport system. This genome sequence represents a critical step in the elucidation of the pathways for reduction (and bioremediation) of pollutants such as uranium (U) and chromium (Cr), and offers a starting point for defining this organisms complex electron transport systems and metal ion–reducing capabilities.


Cell | 1983

Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri

JoAnne Engebrecht; Kenneth H. Nealson; Michael Silverman

Recombinant E. coli that produce light were found in a clone library of hybrid plasmids containing DNA from the marine bacterium Vibrio fischeri. All luminescent clones had a 16 kb insert that encoded enzymatic activities for the light reaction as well as regulatory functions necessary for expression of the luminescence phenotype (Lux). Mutants generated by transposons Tn5 and mini-Mu were used to define Lux functions and to determine the genetic organization of the lux region. Regulatory and enzymatic functions were assigned to regions of two lux operons. With transcriptional fusions between the lacZ gene or transposon mini-Mu and the target gene, expression of lux operons could be measured in the absence of light production. The direction of transcription of lux operons was deduced from the orientation of mini-Mu insertions in the fusion plasmids. Induction of transcription of one lux operon required a function encoded by that operon (autoregulation). From these and other regulatory relationships, we propose a model for genetic control of light production.


Nature Reviews Microbiology | 2008

Towards Environmental Systems Biology of Shewanella

James K. Fredrickson; Margaret F. Romine; Alexander S. Beliaev; Jennifer M. Auchtung; Michael E. Driscoll; Timothy S. Gardner; Kenneth H. Nealson; Andrei L. Osterman; Grigoriy E. Pinchuk; Jennifer L. Reed; Dmitry A. Rodionov; Jorge L. M. Rodrigues; Daad A. Saffarini; Margrethe H. Serres; Alfred M. Spormann; Igor B. Zhulin; James M. Tiedje

Bacteria of the genus Shewanella are known for their versatile electron-accepting capacities, which allow them to couple the decomposition of organic matter to the reduction of the various terminal electron acceptors that they encounter in their stratified environments. Owing to their diverse metabolic capabilities, shewanellae are important for carbon cycling and have considerable potential for the remediation of contaminated environments and use in microbial fuel cells. Systems-level analysis of the model species Shewanella oneidensis MR-1 and other members of this genus has provided new insights into the signal-transduction proteins, regulators, and metabolic and respiratory subsystems that govern the remarkable versatility of the shewanellae.


Systematic and Applied Microbiology | 1984

The phylogeny of purple bacteria: The alpha subdivision

Carl R. Woese; Erko Stackebrandt; William G. Weisburg; Bruce J. Paster; Michael T. Madigan; Valerie J. Fowler; Christine M. Hahn; Paul Blanz; Ramesh Gupta; Kenneth H. Nealson; George E. Fox

The technique of oligonucleotide cataloging shows the purple photosynthetic eubacteria to comprise three major subdivisions, temporarily called alpha, beta, and gamma--previously designated groups I-III by Gibson et al. (1979). Each subdivision contains a number of non-photosynthetic genera in addition to the photosynthetic ones. The alpha subdivision, the subject of the present report, contains most but not all of the species that fall into the classically defined genera Rhodospirillum, Rhodopseudomonas and Rhodomicrobium. Intermingled with these are a variety of non-photosynthetic species from genera such as Agrobacterium, Rhizobium, Azospirillum, Nitrobacter, Erythrobacter, Phenylobacterium, Aquaspirillum, and Paracoccus. The phylogenetic substructure of the alpha subdivision is presented and the evolutionary significance of the admixture of biochemical phenotypes is discussed.


Chemical Geology | 2003

Application of Fe isotopes to tracing the geochemical and biological cycling of Fe

Brian L. Beard; Clark M. Johnson; Joseph Skulan; Kenneth H. Nealson; Lea Cox; Henry J. Sun

Over 100 high-precision Fe isotope analyses of rocks and minerals are now available, which constrain the range in d 56 Fe values (per mil deviations in 56 Fe/ 54 Fe ratios) in nature from � 2.50xto +1.5x. Re-assessment of the range of d 56 Fe values for igneous rocks, using new ultra-high-precision analytical methods discussed here, indicate that igneous Fe is isotopically homogeneous to F0.05x, which represents an unparalleled baseline with which to interpret Fe isotope variations in nature. All of the isotopic variability in nature lies in fluids, rocks, and minerals that formed at low temperature. Equilibrium (‘‘abiotic’’) isotopic fractionations at low temperatures may explain the range in d 56 Fe values; experimental measurements indicate that there is a large isotopic fractionation between aqueous Fe(III) and Fe(II) (DFe(III)–Fe(II)=2.75x). However, many of the natural samples that have been analyzed have an unquestionable biologic component to their genesis, and the range in d 56 Fe values are also consistent with the experimentally measured isotopic fractionations produced by Fereducing bacteria. In this work, we touch on a number of aspects of Fe isotope geochemistry that bear on its application to geochemical problems in general, and biological cycling of metals in particular. We report on new state-of-the-art Fe isotope analytical procedures, which allow precisions of F0.05x( 56 Fe/ 54 Fe) on samples <300 ng in size. In addition, we discuss the implications of experimental work on Fe isotope fractionations during metabolic processing of Fe by bacteria and the need to take a ‘‘mechanistic’’ approach to understanding the pathways in which Fe isotopes may be uniquely fractionated by biology. Additionally, we discuss experimental methods, such as the use of enriched isotope tracers that are necessary to evaluate if experimental isotope exchange reactions are transient kinetic fractionations, equilibrium isotopic exchange reactions, or a combination of both, which can be caused by the complexities of multiple isotope exchange reactions taking place in an experimental system. D 2002 Elsevier Science B.V. All rights reserved.


Applied and Environmental Microbiology | 2007

Current Production and Metal Oxide Reduction by Shewanella oneidensis MR-1 Wild Type and Mutants

Orianna Bretschger; Anna Obraztsova; Carter A. Sturm; In Seop Chang; Yuri A. Gorby; Samantha B. Reed; David E. Culley; Catherine L. Reardon; Soumitra Barua; Margaret F. Romine; Jizhong Zhou; Alexander S. Beliaev; Rachida Bouhenni; Daad A. Saffarini; Florian Mansfeld; Byung-Hong Kim; James K. Fredrickson; Kenneth H. Nealson

ABSTRACT Shewanella oneidensis MR-1 is a gram-negative facultative anaerobe capable of utilizing a broad range of electron acceptors, including several solid substrates. S. oneidensis MR-1 can reduce Mn(IV) and Fe(III) oxides and can produce current in microbial fuel cells. The mechanisms that are employed by S. oneidensis MR-1 to execute these processes have not yet been fully elucidated. Several different S. oneidensis MR-1 deletion mutants were generated and tested for current production and metal oxide reduction. The results showed that a few key cytochromes play a role in all of the processes but that their degrees of participation in each process are very different. Overall, these data suggest a very complex picture of electron transfer to solid and soluble substrates by S. oneidensis MR-1.


Applied and Environmental Microbiology | 2003

Microbial Communities Associated with Geological Horizons in Coastal Subseafloor Sediments from the Sea of Okhotsk

Fumio Inagaki; Masae Suzuki; Ken Takai; Hanako Oida; Tatsuhiko Sakamoto; Kaori Aoki; Kenneth H. Nealson; Koki Horikoshi

ABSTRACT Microbial communities from a subseafloor sediment core from the southwestern Sea of Okhotsk were evaluated by performing both cultivation-dependent and cultivation-independent (molecular) analyses. The core, which extended 58.1 m below the seafloor, was composed of pelagic clays with several volcanic ash layers containing fine pumice grains. Direct cell counting and quantitative PCR analysis of archaeal and bacterial 16S rRNA gene fragments indicated that the bacterial populations in the ash layers were approximately 2 to 10 times larger than those in the clays. Partial sequences of 1,210 rRNA gene clones revealed that there were qualitative differences in the microbial communities from the two different types of layers. Two phylogenetically distinct archaeal assemblages in the Crenarchaeota, the miscellaneous crenarchaeotic group and the deep-sea archaeal group, were the most predominant archaeal 16S rRNA gene components in the ash layers and the pelagic clays, respectively. Clones of 16S rRNA gene sequences from members of the gamma subclass of the class Proteobacteria dominated the ash layers, whereas sequences from members of the candidate division OP9 and the green nonsulfur bacteria dominated the pelagic clay environments. Molecular (16S rRNA gene sequence) analysis of 181 isolated colonies revealed that there was regional proliferation of viable heterotrophic mesophiles in the volcanic ash layers, along with some gram-positive bacteria and actinobacteria. The porous ash layers, which ranged in age from tens of thousands of years to hundreds of thousands of years, thus appear to be discrete microbial habitats within the coastal subseafloor clay sediment, which are capable of harboring microbial communities that are very distinct from the communities in the more abundant pelagic clays.

Collaboration


Dive into the Kenneth H. Nealson's collaboration.

Top Co-Authors

Avatar

Ken Takai

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koki Horikoshi

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Alexandre I. Tsapin

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yuri A. Gorby

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Margaret F. Romine

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Fumio Inagaki

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Radu Popa

Portland State University

View shared research outputs
Top Co-Authors

Avatar

Jinjun Kan

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge