Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Orianna Bretschger is active.

Publication


Featured researches published by Orianna Bretschger.


Applied and Environmental Microbiology | 2007

Current Production and Metal Oxide Reduction by Shewanella oneidensis MR-1 Wild Type and Mutants

Orianna Bretschger; Anna Obraztsova; Carter A. Sturm; In Seop Chang; Yuri A. Gorby; Samantha B. Reed; David E. Culley; Catherine L. Reardon; Soumitra Barua; Margaret F. Romine; Jizhong Zhou; Alexander S. Beliaev; Rachida Bouhenni; Daad A. Saffarini; Florian Mansfeld; Byung-Hong Kim; James K. Fredrickson; Kenneth H. Nealson

ABSTRACT Shewanella oneidensis MR-1 is a gram-negative facultative anaerobe capable of utilizing a broad range of electron acceptors, including several solid substrates. S. oneidensis MR-1 can reduce Mn(IV) and Fe(III) oxides and can produce current in microbial fuel cells. The mechanisms that are employed by S. oneidensis MR-1 to execute these processes have not yet been fully elucidated. Several different S. oneidensis MR-1 deletion mutants were generated and tested for current production and metal oxide reduction. The results showed that a few key cytochromes play a role in all of the processes but that their degrees of participation in each process are very different. Overall, these data suggest a very complex picture of electron transfer to solid and soluble substrates by S. oneidensis MR-1.


Bioelectrochemistry | 2008

The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell.

Aswin K. Manohar; Orianna Bretschger; Kenneth H. Nealson; Florian Mansfeld

Electrochemical impedance spectroscopy (EIS) has been used to determine several electrochemical properties of the anode and cathode of a mediator-less microbial fuel cell (MFC) under different operational conditions. These operational conditions included a system with and without the bacterial catalyst and EIS measurements at the open-circuit potential of the anode and the cathode or at an applied cell voltage. In all cases the impedance spectra followed a simple one-time-constant model (OTCM) in which the solution resistance is in series with a parallel combination of the polarization resistance and the electrode capacitance. Analysis of the impedance spectra showed that addition of Shewanella oneidensis MR-1 to a solution of buffer and lactate greatly increased the rate of the lactate oxidation at the anode under open-circuit conditions. The large decrease of open-circuit potential of the anode increased the cell voltage of the MFC and its power output. Measurements of impedance spectra for the MFC at different cell voltages resulted in determining the internal resistance (R(int)) of the MFC and it was found that R(int) is a function of cell voltage. Additionally, R(int) was equal to R(ext) at the cell voltage corresponding to maximum power, where R(ext) is the external resistance that must be applied across the circuit to obtain the maximum power output.


Nature Communications | 2013

A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer

Shun’ichi Ishii; Shino Suzuki; Trina M. Norden-Krichmar; Aaron Tenney; Patrick Chain; M. B. Scholz; Kenneth H. Nealson; Orianna Bretschger

Microbial respiration via extracellular electron transfer (EET) is a ubiquitous reaction that occurs throughout anoxic environments and is a driving force behind global biogeochemical cycling of metals. Here we identify specific EET-active microbes and genes in a diverse biofilm using an innovative approach to analyse the dynamic community-wide response to changing EET rates. We find that the most significant gene expression responses to applied EET stimuli occur in only two microbial groups, Desulfobulbaceae and Desulfuromonadales. Metagenomic analyses reveal high coverage draft genomes of these abundant and active microbes. Our metatranscriptomic results show known and unknown genes that are highly responsive to EET stimuli and associated with our identified draft genomes. This new approach yields a comprehensive image of functional microbes and genes related to EET activity in a diverse community, representing the next step towards unravelling complex microbial roles within a community and how microbes adapt to specific environmental stimuli.


Environmental Science & Technology | 2010

Quantification of Electron Transfer Rates to a Solid Phase Electron Acceptor through the Stages of Biofilm Formation from Single Cells to Multicellular Communities

Jeffrey S. McLean; Greg Wanger; Yuri A. Gorby; Martin Wainstein; Jeff McQuaid; Shun’ichi Ishii; Orianna Bretschger; Haluk Beyenal; Kenneth H. Nealson

Microbial fuel cell (MFC) technology has enabled new insights into the mechanisms of electron transfer from dissimilatory metal reducing bacteria to a solid phase electron acceptor. Using solid electrodes as electron acceptors enables quantitative real-time measurements of electron transfer rates to these surfaces. We describe here an optically accessible, dual anode, continuous flow MFC that enables real-time microscopic imaging of anode populations as they develop from single attached cells to a mature biofilms. We used this system to characterize how differences in external resistance affect cellular electron transfer rates on a per cell basis and overall biofilm development in Shewanella oneidensis strain MR-1. When a low external resistance (100 Omega) was used, estimates of current per cell reached a maximum of 204 fA/cell (1.3 x 10(6) e(-) cell(-1) sec(-1)), while when a higher (1 MOmega) resistance was used, only 75 fA/cell (0.4 x 10(6) e(-) cell(-1) sec(-1)) was produced. The 1 MOmega anode biomass consistently developed into a mature thick biofilm with tower morphology (>50 microm thick), whereas only a thin biofilm (<5 microm thick) was observed on the 100 Omega anode. These data suggest a link between the ability of a surface to accept electrons and biofilm structure development.


Biosensors and Bioelectronics | 2008

The influence of acidity on microbial fuel cells containing Shewanella oneidensis

Justin C. Biffinger; Jeremy J. Pietron; Orianna Bretschger; Lloyd J. Nadeau; Glenn R. Johnson; Cynthia Williams; Kenneth H. Nealson; Bradley R. Ringeisen

Microbial fuel cells (MFCs) traditionally operate at pH values between 6 and 8. However, the effect of pH on the growth and electron transfer abilities of Shewanella oneidensis MR-1 (wild-type) and DSP10 (spontaneous mutant), bacteria commonly used in MFCs, to electrodes has not been examined. Miniature MFCs using bare graphite felt electrodes and nanoporous polycarbonate membranes with MR-1 or DSP10 cultures generated >8W/m(3) and approximately 400muA between pH 6-7. The DSP10 strain significantly outperformed MR-1 at neutral pH but underperformed at pH 5. Higher concentrations of DSP10 were sustained at pH 7 relative to that of MR-1, whereas at pH 5 this trend was reversed indicating that cell count was not solely responsible for the observed differences in current. S. oneidensis MR-1 was determined to be more suitable than DSP10 for MFCs with elevated acidity levels. The concentration of riboflavin in the bacterial cultures was reduced significantly at pH 5 for DSP10, as determined by high performance liquid chromatography (HPLC) of the filter sterilized growth media. In addition, these results suggest that mediator biosynthesis and not solely bacterial concentration plays a significant role in current output from S. oneidensis containing MFCs.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Electrokinesis is a microbial behavior that requires extracellular electron transport.

Howard W. Harris; Mohamed Y. El-Naggar; Orianna Bretschger; Michael Ward; Margaret F. Romine; Anna Obraztsova; Kenneth H. Nealson

We report a previously undescribed bacterial behavior termed electrokinesis. This behavior was initially observed as a dramatic increase in cell swimming speed during reduction of solid MnO2 particles by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. The same behavioral response was observed when cells were exposed to small positive applied potentials at the working electrode of a microelectrochemical cell and could be tuned by adjusting the potential on the working electrode. Electrokinesis was found to be different from both chemotaxis and galvanotaxis but was absent in mutants defective in electron transport to solid metal oxides. Using in situ video microscopy and cell tracking algorithms, we have quantified the response for different strains of Shewanella and shown that the response correlates with current-generating capacity in microbial fuel cells. The electrokinetic response was only exhibited by a subpopulation of cells closest to the MnO2 particles or electrodes. In contrast, the addition of 1 mM 9,10-anthraquinone-2,6-disulfonic acid, a soluble electron shuttle, led to increases in motility in the entire population. Electrokinesis is defined as a behavioral response that requires functional extracellular electron transport and that is observed as an increase in cell swimming speeds and lengthened paths of motion that occur in the proximity of a redox active mineral surface or the working electrode of an electrochemical cell.


The ISME Journal | 2014

Microbial population and functional dynamics associated with surface potential and carbon metabolism

Shun’ichi Ishii; Shino Suzuki; Trina M. Norden-Krichmar; Tony Phan; Greg Wanger; Kenneth H. Nealson; Yuji Sekiguchi; Yuri A. Gorby; Orianna Bretschger

Microbial extracellular electron transfer (EET) to solid surfaces is an important reaction for metal reduction occurring in various anoxic environments. However, it is challenging to accurately characterize EET-active microbial communities and each member’s contribution to EET reactions because of changes in composition and concentrations of electron donors and solid-phase acceptors. Here, we used bioelectrochemical systems to systematically evaluate the synergistic effects of carbon source and surface redox potential on EET-active microbial community development, metabolic networks and overall electron transfer rates. The results indicate that faster biocatalytic rates were observed under electropositive electrode surface potential conditions, and under fatty acid-fed conditions. Temporal 16S rRNA-based microbial community analyses showed that Geobacter phylotypes were highly diverse and apparently dependent on surface potentials. The well-known electrogenic microbes affiliated with the Geobacter metallireducens clade were associated with lower surface potentials and less current generation, whereas Geobacter subsurface clades 1 and 2 were associated with higher surface potentials and greater current generation. An association was also observed between specific fermentative phylotypes and Geobacter phylotypes at specific surface potentials. When sugars were present, Tolumonas and Aeromonas phylotypes were preferentially associated with lower surface potentials, whereas Lactococcus phylotypes were found to be closely associated with Geobacter subsurface clades 1 and 2 phylotypes under higher surface potential conditions. Collectively, these results suggest that surface potentials provide a strong selective pressure, at the species and strain level, for both solid surface respirators and fermentative microbes throughout the EET-active community development.


Energy and Environmental Science | 2016

Iron based catalysts from novel low-cost organic precursors for enhanced oxygen reduction reaction in neutral media microbial fuel cells

Carlo Santoro; Alexey Serov; Lydia Stariha; Mounika Kodali; Jonathan Gordon; Sofia Babanova; Orianna Bretschger; Kateryna Artyushkova; Plamen Atanassov

Two iron-based platinum group metal-free catalysts for the oxygen reduction reaction (ORR) were synthesized from novel and low cost organic precursors named niclosamide and ricobendazole. These catalysts have been characterized, incorporated in a gas diffusional electrode and tested in “clean” conditions as well as in operating microbial fuel cell (MFC) for 32 days. Both catalysts demonstrated unprecedented performance yielding a power density 25% higher than that of platinum (Pt) and roughly 100% higher than activated carbon (AC) used as a control. Durability tests were performed and showed that Pt-based cathodes lost their activity within the first week of operation, reaching the level of the supporting AC-based electrode. Fe–ricobendazole, however, demonstrated the highest performance during the long-term study with a power density of 195 ± 7 μW cm−2 (day 2) that slightly decreased to 186 ± 9 μW cm−2 at day 29. Fe–niclosamide also outperformed Pt and AC but the power density roughly decreased with 20% for the 32 days of the study. Accelerated poisoning test using S2− as pollutant showed high losses in activity for Pt. Fe–niclosamide suffered higher losses compared to Fe–ricobendazole. Importantly, Fe–ricobendazole represents a 55-fold cost reduction compared to platinum.


PLOS ONE | 2012

Functionally Stable and Phylogenetically Diverse Microbial Enrichments from Microbial Fuel Cells during Wastewater Treatment

Shun’ichi Ishii; Shino Suzuki; Trina M. Norden-Krichmar; Kenneth H. Nealson; Yuji Sekiguchi; Yuri A. Gorby; Orianna Bretschger

Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here we report findings from a MFC operated for over 300 days using only primary clarifier effluent collected from a municipal wastewater treatment plant as the microbial resource and substrate. The system was operated in a repeat-batch mode, where the reactor solution was replaced once every two weeks with new primary effluent that consisted of different microbial and chemical compositions with every batch exchange. The turbidity of the primary clarifier effluent solution notably decreased, and 97% of biological oxygen demand (BOD) was removed after an 8–13 day residence time for each batch cycle. On average, the limiting current density was 1000 mA/m2, the maximum power density was 13 mW/m2, and coulombic efficiency was 25%. Interestingly, the electrochemical performance and BOD removal rates were very reproducible throughout MFC operation regardless of the sample variability associated with each wastewater exchange. While MFC performance was very reproducible, the phylogenetic analyses of anode-associated electricity-generating biofilms showed that the microbial populations temporally fluctuated and maintained a high biodiversity throughout the year-long experiment. These results suggest that MFC communities are both self-selecting and self-optimizing, thereby able to develop and maintain functional stability regardless of fluctuations in carbon source(s) and regular introduction of microbial competitors. These results contribute significantly toward the practical application of MFC systems for long-term wastewater treatment as well as demonstrating MFC technology as a useful device to enrich for functionally stable microbial populations.


Enzyme and Microbial Technology | 2011

Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation

Scott R. Higgins; Daniel Foerster; Andrea Cheung; Carolin Lau; Orianna Bretschger; Shelley D. Minteer; Kenneth H. Nealson; Plamen Atanassov; Michael J. Cooney

Chitosan (CHIT) scaffolds doped with multi-walled carbon nanotubes (CNT) were fabricated and evaluated for their utility as a microbial fuel cell (MFC) anodic material. High resolution microscopy verified the ability of Shewanella oneidensis MR-1 to directly colonize CHIT-CNT scaffolds. Cross-linking agents 1-ethyl-3-[3-dimethylaminopropyl] carbodimide hydrochloride (EDC), glutaraldehyde and glyoxal were independently studied for their ability to strengthen the CHIT-CNT matrix without disrupting the final pore structure. 2.5 vol% glyoxal was found to be the optimal cross-linker in terms of porosity (BET surface area=30.2 m(2) g(-1)) and structural stability. Glyoxyl and EDC cross-linked CHIT-CNT scaffolds were then studied for their ability to transfer electrons to underlying glassy carbon. Results showed an open circuit cell voltage of 600 mV and a maximum power density of 4.75 W/m(3) at a current density of 16 A/m(3) was achieved in non stirred batch mode, which compares well with published data using carbon felt electrodes where a power density of 3.5 W/m(3) at a current density of 7 A/m(3) have been reported. Additionally, CHIT-CNT scaffolds were impregnated into carbon felt electrodes and these results suggest that CHIT-CNT scaffolds can be successfully integrated with multiple support materials to create hybrid electrode materials. Further, preliminary tests indicate that the integrated scaffolds offer a robust macroporous electrode material that can be used in flow-through configurations.

Collaboration


Dive into the Orianna Bretschger's collaboration.

Top Co-Authors

Avatar

Kenneth H. Nealson

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Sofia Babanova

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shino Suzuki

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kayla Carpenter

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuri A. Gorby

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Shirley Chan

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Sujal Phadke

J. Craig Venter Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge