Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth Huffman is active.

Publication


Featured researches published by Kenneth Huffman.


Nature Genetics | 2012

Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer

Charles M. Rudin; Steffen Durinck; Eric Stawiski; John T. Poirier; Zora Modrusan; David S. Shames; Emily Bergbower; Yinghui Guan; James Shin; Joseph Guillory; Celina Sanchez Rivers; Catherine K. Foo; Deepali Bhatt; Jeremy Stinson; Florian Gnad; Peter M. Haverty; Robert Gentleman; Subhra Chaudhuri; Vasantharajan Janakiraman; Bijay S. Jaiswal; Chaitali Parikh; Wenlin Yuan; Zemin Zhang; Hartmut Koeppen; Thomas D. Wu; Howard M. Stern; Robert L. Yauch; Kenneth Huffman; Diego D Paskulin; Peter B. Illei

Small-cell lung cancer (SCLC) is an exceptionally aggressive disease with poor prognosis. Here, we obtained exome, transcriptome and copy-number alteration data from approximately 53 samples consisting of 36 primary human SCLC and normal tissue pairs and 17 matched SCLC and lymphoblastoid cell lines. We also obtained data for 4 primary tumors and 23 SCLC cell lines. We identified 22 significantly mutated genes in SCLC, including genes encoding kinases, G protein–coupled receptors and chromatin-modifying proteins. We found that several members of the SOX family of genes were mutated in SCLC. We also found SOX2 amplification in ∼27% of the samples. Suppression of SOX2 using shRNAs blocked proliferation of SOX2-amplified SCLC lines. RNA sequencing identified multiple fusion transcripts and a recurrent RLF-MYCL1 fusion. Silencing of MYCL1 in SCLC cell lines that had the RLF-MYCL1 fusion decreased cell proliferation. These data provide an in-depth view of the spectrum of genomic alterations in SCLC and identify several potential targets for therapeutic intervention.


Nature Structural & Molecular Biology | 2006

Involvement of AGO1 and AGO2 in mammalian transcriptional silencing

Bethany A. Janowski; Kenneth Huffman; Jacob C. Schwartz; Rosalyn Ram; Robert Nordsell; David S. Shames; John D. Minna; David R. Corey

Duplex RNAs complementary to messenger RNA inhibit translation in mammalian cells by RNA interference (RNAi). Studies have reported that RNAs complementary to promoter DNA also inhibit gene expression. Here we show that the human homologs of Argonaute-1 (AGO1) and Argonaute-2 (AGO2) link the silencing pathways that target mRNA with pathways mediating recognition of DNA. We find that synthetic antigene RNAs (agRNAs) complementary to transcription start sites or more upstream regions of gene promoters inhibit gene transcription. This silencing occurs in the nucleus, requires high promoter activity and does not necessarily require histone modification. AGO1 and AGO2 associate with promoter DNA in cells treated with agRNAs, and inhibiting expression of AGO1 or AGO2 reverses transcriptional and post-transcriptional silencing. Our data indicate key linkages and important mechanistic distinctions between transcriptional and post-transcriptional silencing pathways in mammalian cells.


Nature Genetics | 2015

NRF2 regulates serine biosynthesis in non–small cell lung cancer

Gina M. DeNicola; Pei Hsuan Chen; Edouard Mullarky; Jessica Sudderth; Zeping Hu; David Wu; Hao Tang; Yang Xie; John M. Asara; Kenneth Huffman; Ignacio I. Wistuba; John D. Minna; Ralph J. DeBerardinis; Lewis C. Cantley

Tumors have high energetic and anabolic needs for rapid cell growth and proliferation, and the serine biosynthetic pathway was recently identified as an important source of metabolic intermediates for these processes. We integrated metabolic tracing and transcriptional profiling of a large panel of non–small cell lung cancer (NSCLC) cell lines to characterize the activity and regulation of the serine/glycine biosynthetic pathway in NSCLC. Here we show that the activity of this pathway is highly heterogeneous and is regulated by NRF2, a transcription factor frequently deregulated in NSCLC. We found that NRF2 controls the expression of the key serine/glycine biosynthesis enzyme genes PHGDH, PSAT1 and SHMT2 via ATF4 to support glutathione and nucleotide production. Moreover, we show that expression of these genes confers poor prognosis in human NSCLC. Thus, a substantial fraction of human NSCLCs activates an NRF2-dependent transcriptional program that regulates serine and glycine metabolism and is linked to clinical aggressiveness.


Cell Metabolism | 2014

Inhibition of Cancer Cell Proliferation by PPARγ Is Mediated by a Metabolic Switch that Increases Reactive Oxygen Species Levels

Nishi Srivastava; Rahul K. Kollipara; Dinesh K. Singh; Jessica Sudderth; Zeping Hu; Hien P. Nguyen; Shan Wang; Caroline G. Humphries; Ryan Carstens; Kenneth Huffman; Ralph J. DeBerardinis; Ralf Kittler

The nuclear receptor peroxisome-proliferation-activated receptor gamma (PPARγ), a transcriptional master regulator of glucose and lipid metabolism, inhibits the growth of several common cancers, including lung cancer. In this study, we show that the mechanism by which activation of PPARγ inhibits proliferation of lung cancer cells is based on metabolic changes. We found that treatment with the PPARγ agonist pioglitazone triggers a metabolic switch that inhibits pyruvate oxidation and reduces glutathione levels. These PPARγ-induced metabolic changes result in a marked increase of reactive oxygen species (ROS) levels that lead to rapid hypophosphorylation of retinoblastoma protein (RB) and cell-cycle arrest. The antiproliferative effect of PPARγ activation can be prevented by suppressing pyruvate dehydrogenase kinase 4 (PDK4) or β-oxidation of fatty acids in vitro and in vivo. Our proposed mechanism also suggests that metabolic changes can rapidly and directly inhibit cell-cycle progression of cancer cells by altering ROS levels.


Nature | 2017

CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells

Jiyeon Kim; Zeping Hu; Ling Cai; Kailong Li; Eunhee Choi; Brandon Faubert; Divya Bezwada; Jaime Rodriguez-Canales; Pamela Villalobos; Yu Fen Lin; Min Ni; Kenneth Huffman; Luc Girard; Lauren Averett Byers; Keziban Unsal-Kacmaz; Christopher G. Peña; John V. Heymach; Els Wauters; Johan Vansteenkiste; Diego H. Castrillon; Benjamin P C Chen; Ignacio I. Wistuba; Diether Lambrechts; Jian Xu; John D. Minna; Ralph J. DeBerardinis

Metabolic reprogramming by oncogenic signals promotes cancer initiation and progression. The oncogene KRAS and tumour suppressor STK11, which encodes the kinase LKB1, regulate metabolism and are frequently mutated in non-small-cell lung cancer (NSCLC). Concurrent occurrence of oncogenic KRAS and loss of LKB1 (KL) in cells specifies aggressive oncological behaviour. Here we show that human KL cells and tumours share metabolomic signatures of perturbed nitrogen handling. KL cells express the urea cycle enzyme carbamoyl phosphate synthetase-1 (CPS1), which produces carbamoyl phosphate in the mitochondria from ammonia and bicarbonate, initiating nitrogen disposal. Transcription of CPS1 is suppressed by LKB1 through AMPK, and CPS1 expression correlates inversely with LKB1 in human NSCLC. Silencing CPS1 in KL cells induces cell death and reduces tumour growth. Notably, cell death results from pyrimidine depletion rather than ammonia toxicity, as CPS1 enables an unconventional pathway of nitrogen flow from ammonia into pyrimidines. CPS1 loss reduces the pyrimidine to purine ratio, compromises S-phase progression and induces DNA-polymerase stalling and DNA damage. Exogenous pyrimidines reverse DNA damage and rescue growth. The data indicate that the KL oncological genotype imposes a metabolic vulnerability related to a dependence on a cross-compartmental pathway of pyrimidine metabolism in an aggressive subset of NSCLC.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells.

Yunfeng Yan; Li Liu; Hu Xiong; Jason B. Miller; Kejin Zhou; Petra Kos; Kenneth Huffman; Sussana Elkassih; John W. Norman; Ryan Carstens; James Kim; John D. Minna; Daniel J. Siegwart

Significance Ideal cancer therapeutics accurately hit tumors and avoid side effects on healthy cells. We used a patient-derived pair of matched cancer/normal cell lines to discover selective nanoparticles that could deliver a cytotoxic siRNA to kill cancer cells and not normal cells. The finding that cells respond differently to the same nanoparticle has profound implications for gene therapy because cell-type specificity of drug carriers in vivo could alter clinical patient outcomes. Our data suggest that selectivity is an underappreciated reality that should be carefully considered when evaluating drug carriers. The combination of both well-defined molecular targets and nanoparticle delivery to targeted cells is likely required to improve cancer drug accuracy in the clinic. Conventional chemotherapeutics nonselectively kill all rapidly dividing cells, which produces numerous side effects. To address this challenge, we report the discovery of functional polyesters that are capable of delivering siRNA drugs selectively to lung cancer cells and not to normal lung cells. Selective polyplex nanoparticles (NPs) were identified by high-throughput library screening on a unique pair of matched cancer/normal cell lines obtained from a single patient. Selective NPs promoted rapid endocytosis into HCC4017 cancer cells, but were arrested at the membrane of HBEC30-KT normal cells during the initial transfection period. When injected into tumor xenografts in mice, cancer-selective NPs were retained in tumors for over 1 wk, whereas nonselective NPs were cleared within hours. This translated to improved siRNA-mediated cancer cell apoptosis and significant suppression of tumor growth. Selective NPs were also able to mediate gene silencing in xenograft and orthotopic tumors via i.v. injection or aerosol inhalation, respectively. Importantly, this work highlights that different cells respond differentially to the same drug carrier, an important factor that should be considered in the design and evaluation of all NP carriers. Because no targeting ligands are required, these functional polyester NPs provide an exciting alternative approach for selective drug delivery to tumor cells that may improve efficacy and reduce adverse side effects of cancer therapies.


Journal of Proteome Research | 2016

Quantitative Secretomic Analysis Identifies Extracellular Protein Factors That Modulate the Metastatic Phenotype of Non-Small Cell Lung Cancer

Rongkuan Hu; Kenneth Huffman; Michael Chu; Yajie Zhang; John D. Minna; Yonghao Yu

Lung cancer is the leading cause of cancer-related deaths for men and women in the United States, with non-small cell lung cancer (NSCLC) representing 85% of all diagnoses. Late stage detection, metastatic disease and lack of actionable biomarkers contribute to the high mortality rate. Proteins in the extracellular space are known to be critically involved in regulating every stage of the pathogenesis of lung cancer. To investigate the mechanism by which secreted proteins contribute to the pathogenesis of NSCLC, we performed quantitative secretomic analysis of two isogenic NSCLC cell lines (NCI-H1993 and NCI-H2073) and an immortalized human bronchial epithelial cell line (HBEC3-KT) as control. H1993 was derived from a chemo-naïve metastatic tumor, while H2073 was derived from the primary tumor after etoposide/cisplatin therapy. From the conditioned media of these three cell lines, we identified and quantified 2713 proteins, including a series of proteins involved in regulating inflammatory response, programmed cell death and cell motion. Gene Ontology (GO) analysis indicates that a number of proteins overexpressed in H1993 media are involved in biological processes related to cancer metastasis, including cell motion, cell-cell adhesion and cell migration. RNA interference (RNAi)-mediated knock down of a number of these proteins, including SULT2B1, CEACAM5, SPRR3, AGR2, S100P, and S100A14, leads to dramatically reduced migration of these cells. In addition, meta-analysis of survival data indicates NSCLC patients whose tumors express higher levels of several of these secreted proteins, including SULT2B1, CEACAM5, SPRR3, S100P, and S100A14, have a worse prognosis. Collectively, our results provide a potential molecular link between deregulated secretome and NSCLC cell migration/metastasis. In addition, the identification of these aberrantly secreted proteins might facilitate the development of biomarkers for early detection of this devastating disease.


Frontiers in Oncology | 2013

Pre-clinical studies of epigenetic therapies targeting histone modifiers in lung cancer.

Kenneth Huffman; Elisabeth D. Martinez

Treatment options for lung cancer patients have been generally limited to standard therapies or targeted interventions which involve a small number of known mutations. Although the targeted therapies are initially successful, they most often result in drug resistance, relapse, and mortality. We now know that the complexity of lung cancer comes not only from genomic changes, but also from aberrant epigenetic regulatory events. Epigenetic therapies have shown promise as single agents in the treatment of hematological malignancies but have yet to meet this expectation in solid tumors thus fostering researchers to pursue new approaches in the development and use of epigenetic interventions. Here, we review some recent pre-clinical findings involving the use of drugs targeting histone modifying enzymes both as single agents and as co-therapies against lung cancer. A greater understanding of the impact of these epigenetic compounds in lung cancer signaling is needed and further evaluation in vivo is warranted in several cases based on the pre-clinical activity of a subset of compounds discussed in this review, including drugs co-targeting HDACs and EGF receptor, targeting Brd4 and targeting Jumonji histone demethylases.


Cancer Prevention Research | 2016

Cancer-Specific Production of N-Acetylaspartate via NAT8L Overexpression in Non–Small Cell Lung Cancer and Its Potential as a Circulating Biomarker

Tzu Fang Lou; Deepa Sethuraman; Patrick Dospoy; Pallevi Srivastva; Hyun Seok Kim; Joongsoo Kim; Xiaotu Ma; Pei Hsuan Chen; Kenneth Huffman; Robin E. Frink; Jill E. Larsen; Cheryl M. Lewis; Sang Won Um; Duk Hwan Kim; Jung Mo Ahn; Ralph J. DeBerardinis; Michael A. White; John D. Minna; Hyuntae Yoo

In order to identify new cancer-associated metabolites that may be useful for early detection of lung cancer, we performed a global metabolite profiling of a non–small cell lung cancer (NSCLC) line and immortalized normal lung epithelial cells from the same patient. Among several metabolites with significant cancer/normal differences, we identified a unique metabolic compound, N-acetylaspartate (NAA), in cancer cells—undetectable in normal lung epithelium. NAAs cancer-specific detection was validated in additional cancer and control lung cells as well as selected NSCLC patient tumors and control tissues. NAAs cancer specificity was further supported in our analysis of NAA synthetase (gene symbol: NAT8L) gene expression levels in The Cancer Genome Atlas: elevated NAT8L expression in approximately 40% of adenocarcinoma and squamous cell carcinoma cases (N = 577), with minimal expression in all nonmalignant lung tissues (N = 74). We then showed that NAT8L is functionally involved in NAA production of NSCLC cells through siRNA-mediated suppression of NAT8L, which caused selective reduction of intracellular and secreted NAA. Our cell culture experiments also indicated that NAA biosynthesis in NSCLC cells depends on glutamine availability. For preliminary evaluation of NAAs clinical potential as a circulating biomarker, we developed a sensitive NAA blood assay and found that NAA blood levels were elevated in 46% of NSCLC patients (N = 13) in comparison with age-matched healthy controls (N = 21) among individuals aged 55 years or younger. Taken together, these results indicate that NAA is produced specifically in NSCLC tumors through NAT8L overexpression, and its extracellular secretion can be detected in blood. Cancer Prev Res; 9(1); 43–52. ©2015 AACR.


Molecular Cancer Research | 2015

Systematic siRNA Screen Unmasks NSCLC Growth Dependence by Palmitoyltransferase DHHC5

Hui Tian; Jui Yun Lu; Chunli Shao; Kenneth Huffman; Ryan Carstens; Jill E. Larsen; Luc Girard; Hui Liu; Jaime Rodriguez-Canales; Eugene P. Frenkel; Ignacio I. Wistuba; John D. Minna; Sandra L. Hofmann

Protein S-palmitoylation is a widespread and dynamic posttranslational modification that regulates protein–membrane interactions, protein–protein interactions, and protein stability. A large family of palmitoyl acyl transferases, termed the DHHC family due to the presence of a common catalytic motif, catalyzes S-palmitoylation; the role of these enzymes in cancer is largely unexplored. In this study, an RNAi-based screen targeting all 23 members of the DHHC family was conducted to examine the effects on the growth in non–small cell lung cancer (NSCLC). Interestingly, siRNAs directed against DHHC5 broadly inhibited the growth of multiple NSCLC lines but not normal human bronchial epithelial cell (HBEC) lines. Silencing of DHHC5 by lentivirus-mediated expression of DHHC5 shRNAs dramatically reduced in vitro cell proliferation, colony formation, and cell invasion in a subset of cell lines that were examined in further detail. The phenotypes were restored by transfection of a wild-type DHHC5 plasmid but not by a plasmid expressing a catalytically inactive DHHC5. Tumor xenograft formation was severely inhibited by DHHC5 knockdown and rescued by DHHC5 expression, using both a conventional and tetracycline-inducible shRNA. These data indicate that DHHC5 has oncogenic capacity and contributes to tumor formation in NSCLC, thus representing a potential novel therapeutic target. Implications: Inhibitors of DHHC5 enzyme activity may inhibit non–small cell lung cancer growth. Mol Cancer Res; 13(4); 784–94. ©2015 AACR.

Collaboration


Dive into the Kenneth Huffman's collaboration.

Top Co-Authors

Avatar

John D. Minna

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Luc Girard

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ignacio I. Wistuba

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Adi F. Gazdar

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ralph J. DeBerardinis

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ryan Carstens

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yang Xie

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

John V. Heymach

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Boning Gao

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Paul Yenerall

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge