Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth Jung is active.

Publication


Featured researches published by Kenneth Jung.


Journal of Immunology | 2007

The Effects of IL-20 Subfamily Cytokines on Reconstituted Human Epidermis Suggest Potential Roles in Cutaneous Innate Defense and Pathogenic Adaptive Immunity in Psoriasis

Susan M. Sa; Patricia Valdez; Jianfeng Wu; Kenneth Jung; Fiona Zhong; Linda Hall; Ian Kasman; Jane Winer; Zora Modrusan; Dimitry M. Danilenko; Wenjun Ouyang

IL-19, IL-20, IL-22, IL-24, and IL-26 are members of the IL-10 family of cytokines that have been shown to be up-regulated in psoriatic skin. Contrary to IL-10, these cytokines signal using receptor complex R1 subunits that are preferentially expressed on cells of epithelial origin; thus, we henceforth refer to them as the IL-20 subfamily cytokines. In this study, we show that primary human keratinocytes (KCs) express receptors for these cytokines and that IL-19, IL-20, IL-22, and IL-24 induce acanthosis in reconstituted human epidermis (RHE) in a dose-dependent manner. These cytokines also induce expression of the psoriasis-associated protein S100A7 and keratin 16 in RHE and cause persistent activation of Stat3 with nuclear localization. IL-22 had the most pronounced effects on KC proliferation and on the differentiation of KCs in RHE, inducing a decrease in the granular cell layer (hypogranulosis). Furthermore, gene expression analysis performed on cultured RHE treated with these cytokines showed that IL-19, IL-20, IL-22, and IL-24 regulate many of these same genes to variable degrees, inducing a gene expression profile consistent with inflammatory responses, wound healing re-epithelialization, and altered differentiation. Many of these genes have also been found to be up-regulated in psoriatic skin, including several chemokines, β-defensins, S100 family proteins, and kallikreins. These results confirm that IL-20 subfamily cytokines are important regulators of epidermal KC biology with potentially pivotal roles in the immunopathology of psoriasis.


The Journal of Pathology | 2005

Expression profiling the human septin gene family.

Peter A. Hall; Kenneth Jung; Kenneth J. Hillan; S. E. Hilary Russell

The septins are an evolutionarily conserved family of GTP‐binding proteins involved in diverse processes including vesicle trafficking, apoptosis, remodelling of the cytoskeleton, infection, neurodegeneration, and neoplasia. The present paper reports a comprehensive study of septin gene expression by DNA microarray methods in 10 360 samples of normal, diseased, and tumour tissues. A novel septin, SEPT13, has been identified and is shown to be related to SEPT7. It is shown that SEPT13 and the other known human septins are expressed in all tissue types but some show high expression in lymphoid (SEPT1, 6, 9, and 12) or brain tissues (SEPT2, 3, 4, 5, 7, 8, and 11). For a given septin, some isoforms are highly expressed in the brain and others are not. For example, SEPT8_v2 and v1, 1* and 3 are highly expressed in the brain and cluster with SEPT2, 3, 4, 5, 7, and 11. However, a probe set specific for SEPT8_v1 with low brain expression clusters away from this set. Similarly, SEPT4 has lymphoid and non‐lymphoid forms; SEPT2 has lymphoid and central nervous system (CNS) forms; and SEPT6 and SEPT9 are elevated in lymphoid tissues but both have forms that cluster away from the lymphoid forms. Perturbation of septin expression was widespread in disease and tumours of the various tissues examined, particularly for conditions of the CNS, where alterations in all 13 septin genes were identified. This analysis provides a comprehensive catalogue of the septin family in health and disease. It is a key step in understanding the role of septins in physiological and pathological states and provides insight into the complexity of septin biology. Copyright


BMC Medical Genomics | 2011

Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples

Serban Nacu; Wenlin Yuan; Zhengyan Kan; Deepali Bhatt; Celina Sanchez Rivers; Jeremy Stinson; Brock A. Peters; Zora Modrusan; Kenneth Jung; Somasekar Seshagiri; Thomas D. Wu

BackgroundReadthrough fusions across adjacent genes in the genome, or transcription-induced chimeras (TICs), have been estimated using expressed sequence tag (EST) libraries to involve 4-6% of all genes. Deep transcriptional sequencing (RNA-Seq) now makes it possible to study the occurrence and expression levels of TICs in individual samples across the genome.MethodsWe performed single-end RNA-Seq on three human prostate adenocarcinoma samples and their corresponding normal tissues, as well as brain and universal reference samples. We developed two bioinformatics methods to specifically identify TIC events: a targeted alignment method using artificial exon-exon junctions within 200,000 bp from adjacent genes, and genomic alignment allowing splicing within individual reads. We performed further experimental verification and characterization of selected TIC and fusion events using quantitative RT-PCR and comparative genomic hybridization microarrays.ResultsTargeted alignment against artificial exon-exon junctions yielded 339 distinct TIC events, including 32 gene pairs with multiple isoforms. The false discovery rate was estimated to be 1.5%. Spliced alignment to the genome was less sensitive, finding only 18% of those found by targeted alignment in 33-nt reads and 59% of those in 50-nt reads. However, spliced alignment revealed 30 cases of TICs with intervening exons, in addition to distant inversions, scrambled genes, and translocations. Our findings increase the catalog of observed TIC gene pairs by 66%.We verified 6 of 6 predicted TICs in all prostate samples, and 2 of 5 predicted novel distant gene fusions, both private events among 54 prostate tumor samples tested. Expression of TICs correlates with that of the upstream gene, which can explain the prostate-specific pattern of some TIC events and the restriction of the SLC45A3-ELK4 e4-e2 TIC to ERG-negative prostate samples, as confirmed in 20 matched prostate tumor and normal samples and 9 lung cancer cell lines.ConclusionsDeep transcriptional sequencing and analysis with targeted and spliced alignment methods can effectively identify TIC events across the genome in individual tissues. Prostate and reference samples exhibit a wide range of TIC events, involving more genes than estimated previously using ESTs. Tissue specificity of TIC events is correlated with expression patterns of the upstream gene. Some TIC events, such as MSMB-NCOA4, may play functional roles in cancer.


Cell | 2011

The STARD9/Kif16a Kinesin Associates with Mitotic Microtubules and Regulates Spindle Pole Assembly

Jorge Z. Torres; Matthew K. Summers; David Peterson; Matthew J. Brauer; James Lee; Silvia Senese; Ankur A. Gholkar; Yu-Chen Lo; Xingye Lei; Kenneth Jung; David C. Anderson; David P. Davis; Lisa D. Belmont; Peter K. Jackson

During cell division, cells form the microtubule-based mitotic spindle, a highly specialized and dynamic structure that mediates proper chromosome transmission to daughter cells. Cancer cells can show perturbed mitotic spindles and an approach in cancer treatment has been to trigger cell killing by targeting microtubule dynamics or spindle assembly. To identify and characterize proteins necessary for spindle assembly, and potential antimitotic targets, we performed a proteomic and genetic analysis of 592 mitotic microtubule copurifying proteins (MMCPs). Screening for regulators that affect both mitosis and apoptosis, we report the identification and characterization of STARD9, a kinesin-3 family member, which localizes to centrosomes and stabilizes the pericentriolar material (PCM). STARD9-depleted cells have fragmented PCM, form multipolar spindles, activate the spindle assembly checkpoint (SAC), arrest in mitosis, and undergo apoptosis. Interestingly, STARD9-depletion synergizes with the chemotherapeutic agent taxol to increase mitotic death, demonstrating that STARD9 is a mitotic kinesin and a potential antimitotic target.


Journal of Biological Chemistry | 2015

Kinome Screen Identifies PFKFB3 and Glucose Metabolism as Important Regulators of the Insulin/Insulin-like Growth Factor (IGF)-1 Signaling Pathway

Sophie Trefely; Poh Sim Khoo; James R. Krycer; Rima Chaudhuri; Daniel J. Fazakerley; Benjamin L. Parker; Ghazal Sultani; James Lee; Jean-Philippe Stephan; Eric Torres; Kenneth Jung; Coenraad Kuijl; David E. James; Jagath R. Junutula; Jacqueline Stöckli

Background: Insulin regulates metabolism via the PI3K/Akt pathway. Results: A kinome siRNA screen identified PFKFB3, a glycolysis regulator, as a modulator of insulin action. Manipulation of PFKFB3 activity or glycolysis affected insulin signaling. Conclusion: Intracellular metabolism modulates important signal transduction pathways. Significance: The novel link between glycolysis and growth factor signaling has important implications for the treatment of metabolic diseases. The insulin/insulin-like growth factor (IGF)-1 signaling pathway (ISP) plays a fundamental role in long term health in a range of organisms. Protein kinases including Akt and ERK are intimately involved in the ISP. To identify other kinases that may participate in this pathway or intersect with it in a regulatory manner, we performed a whole kinome (779 kinases) siRNA screen for positive or negative regulators of the ISP, using GLUT4 translocation to the cell surface as an output for pathway activity. We identified PFKFB3, a positive regulator of glycolysis that is highly expressed in cancer cells and adipocytes, as a positive ISP regulator. Pharmacological inhibition of PFKFB3 suppressed insulin-stimulated glucose uptake, GLUT4 translocation, and Akt signaling in 3T3-L1 adipocytes. In contrast, overexpression of PFKFB3 in HEK293 cells potentiated insulin-dependent phosphorylation of Akt and Akt substrates. Furthermore, pharmacological modulation of glycolysis in 3T3-L1 adipocytes affected Akt phosphorylation. These data add to an emerging body of evidence that metabolism plays a central role in regulating numerous biological processes including the ISP. Our findings have important implications for diseases such as type 2 diabetes and cancer that are characterized by marked disruption of both metabolism and growth factor signaling.


Archive | 2007

Methods and compositions for the diagnosis and treatment of cancer

John Chant; Anthony S. Guerrero; Peter M. Haverty; Cynthia Honchell; Kenneth Jung; Thomas D. Wu


Archive | 2007

Methods and compositions for the diagnosis and treatment of lung cancer using KIT or KDG gene as genetic marker

John Chant; Anthony S. Guerrero; Peter M. Haverty; Cynthia Honchell; Kenneth Jung; Thomas D. Wu


Archive | 2007

Procédés et compositions pour le diagnostic et le traitement du cancer des poumons à l'aide de PDGFRA, kit ou gène KDG en tant que marqueur génétique

John Chant; Anthony S. Guerrero; Peter M. Haverty; Cynthia Honchell; Kenneth Jung; Thomas D. Wu


Archive | 2007

Verfahren und zusammensetzungen zur diagnose und behandlung von krebs Methods and compositions for diagnosis and treatment of cancer

John Chant; Anthony S. Guerrero; Peter M. Haverty; Cynthia Honchell; Kenneth Jung; Thomas D. Wu


Archive | 2007

METHODS AND COMPOSITIONS FOR THE DIAGNOSIS AND TREATMENT OF LUNG CANCER USING PDGFRA, KIT OR KDR GENE AS GENETIC MARKER

John Chant; Anthony S. Guerrero; Peter M. Haverty; Cynthia Honchell; Kenneth Jung; Thomas D. Wu

Collaboration


Dive into the Kenneth Jung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge