Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth L. Roland is active.

Publication


Featured researches published by Kenneth L. Roland.


Avian Diseases | 1999

Construction and evaluation of a delta cya delta crp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli O78 LPS as a vaccine to prevent airsacculitis in chickens.

Kenneth L. Roland; Roy Curtiss; Donata Sizemore

Avian pathogenic strains of Escherichia coli cause a number of extraintestinal diseases in poultry, including airsacculitis and colisepticemia. Expression of O78 lipopolysaccharide (LPS) is frequently associated with pathogenic isolates. Salmonella, a common poultry contaminant, is a major public health concern. The purpose of this work was to develop an E. coli vaccine for poultry with the use of an attenuated Salmonella typhimurium carrier that would benefit both the bird and the consumer. Orally administered attenuated S. typhimurium delta cya delta crp strains have been shown to provide excellent protection against wild-type Salmonella challenge in chickens. This work describes the construction of a delta cya delta crp derivative of an avian pathogenic S. typhimurium that expresses both the homologous group B determinants (O1,4,5,12) and the heterologous E. coli O78 LPS O antigens. This was accomplished by inserting the E. coli rfb region, which encodes the genes required for O78 expression, into the chromosomal cya gene of S. typhimurium, creating a defined deletion/insertion mutation. A delta crp mutation was introduced in a subsequent step. Expression of both O antigens was stable in vitro and in vivo. Vaccination of white leghorn chicks at day of hatch and 14 days with the recombinant vaccine strain induced serum immune responses against both S. typhimurium and E. coli LPS and protected the birds against subsequent challenge with an avian pathogenic E. coli O78 strain. Introduction of a mutation in rfc, which encodes the O antigen polymerase, reduced the chain length of the S. typhimurium LPS without affecting the expression of O78. The rfc mutation further enhanced the ability of the vaccine strain to protect chickens against E. coli challenge.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment

Wei Kong; Soo Young Wanda; Xin Zhang; Wendy Bollen; Steven A. Tinge; Kenneth L. Roland; Roy Curtiss

We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain χ8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis and additional mutations to enhance complete lysis and antigen delivery. The second component is plasmid pYA3681, which encodes arabinose-regulated murA and asdA expression and C2-regulated synthesis of antisense asdA and murA mRNA transcribed from the P22 PR promoter. An arabinose-regulated c2 gene is present in the chromosome. χ8937(pYA3681) exhibits arabinose-dependent growth. Upon invasion of host tissues, an arabinose-free environment, transcription of asdA, murA, and c2 ceases, and concentrations of their gene products decrease because of cell division. The drop in C2 concentration results in activation of PR, driving synthesis of antisense mRNA to block translation of any residual asdA and murA mRNA. A highly antigenic α-helical domain of Streptococcus pneumoniae Rx1 PspA was cloned into pYA3681, resulting in pYA3685 to test antigen delivery. Mice orally immunized with χ8937(pYA3685) developed antibody responses to PspA and Salmonella outer membrane proteins. No viable vaccine strain cells were detected in host tissues after 21 days. This system has potential applications with other Gram-negative bacteria in which biological containment would be desirable.


Infection and Immunity | 2011

Effect of Deletion of Genes Involved in Lipopolysaccharide Core and O-Antigen Synthesis on Virulence and Immunogenicity of Salmonella enterica Serovar Typhimurium

Qingke Kong; Jiseon Yang; Qing Liu; Praveen Alamuri; Kenneth L. Roland; Roy Curtiss

ABSTRACT Lipopolysaccharide (LPS) is a major virulence factor of Salmonella enterica serovar Typhimurium and is composed of lipid A, core oligosaccharide (C-OS), and O-antigen polysaccharide (O-PS). While the functions of the gene products involved in synthesis of core and O-antigen have been elucidated, the effect of removing O-antigen and core sugars on the virulence and immunogenicity of Salmonella enterica serovar Typhimurium has not been systematically studied. We introduced nonpolar, defined deletion mutations in waaG (rfaG), waaI (rfaI), rfaH, waaJ (rfaJ), wbaP (rfbP), waaL (rfaL), or wzy (rfc) into wild-type S. Typhimurium. The LPS structure was confirmed, and a number of in vitro and in vivo properties of each mutant were analyzed. All mutants were significantly attenuated compared to the wild-type parent when administered orally to BALB/c mice and were less invasive in host tissues. Strains with ΔwaaG and ΔwaaI mutations, in particular, were deficient in colonization of Peyers patches and liver. This deficiency could be partially overcome in the ΔwaaI mutant when it was administered intranasally. In the context of an attenuated vaccine strain delivering the pneumococcal antigen PspA, all of the mutations tested resulted in reduced immune responses against PspA and Salmonella antigens. Our results indicate that nonreversible truncation of the outer core is not a viable option for developing a live oral Salmonella vaccine, while a wzy mutant that retains one O-antigen unit is adequate for stimulating the optimal protective immunity to homologous or heterologous antigens by oral, intranasal, or intraperitoneal routes of administration.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Evaluation of new generation Salmonella enterica serovar Typhimurium vaccines with regulated delayed attenuation to induce immune responses against PspA

Yuhua Li; Shifeng Wang; Giorgio Scarpellini; Bronwyn M. Gunn; Wei Xin; Soo Young Wanda; Kenneth L. Roland; Roy Curtiss

Increasing the immunogenicity to delivered antigens by recombinant attenuated Salmonella vaccines (RASV) has been the subject of intensive study. With this goal in mind, we have designed and constructed a new generation of RASV that exhibit regulated delayed attenuation. These vaccine strains are phenotypically wild type at the time of immunization and become attenuated after colonization of host tissues. The vaccine strains are grown under conditions that allow expression of genes required for optimal invasion and colonization of host tissues. Once established in the host, these virulence genes are turned off, fully attenuating the vaccine strain. In this study, we compared 2 of our newly developed regulated delayed attenuation Salmonella enterica serovar Typhimurium strains χ9088 and χ9558 with the Δcya Δcrp Δasd strain χ8133, for their abilities to express and present a secreted form of the α-helical region of pneumococcal surface protein A (PspA) to the mouse immune system. All 3 strains induced high levels of serum antibodies specific for PspA as well as to Salmonella antigens in orally immunized mice. However, both RASVs expressing delayed attenuation elicited significantly greater anti-PspA immune responses, including serum IgG and T cell secretion of IL-4 and IFN-γ, than other groups. Also, vaccination with delayed attenuation strains resulted in a greater degree of protection against Streptococcus pneumoniae challenge than in mice vaccinated with χ8133 (71–86% vs. 21% survival, P ≤ 0.006). Together, the results demonstrate that the regulated attenuation strategy results in highly immunogenic antigen delivery vectors for oral vaccination.


Infection and Immunity | 2008

A sopB Deletion Mutation Enhances the Immunogenicity and Protective Efficacy of a Heterologous Antigen Delivered by Live Attenuated Salmonella enterica Vaccines

Yuhua Li; Shifeng Wang; Wei Xin; Giorgio Scarpellini; Zhaoxing Shi; Bronwyn M. Gunn; Kenneth L. Roland; Roy Curtiss

ABSTRACT SopB is a virulence factor of Salmonella encoded by SPI-5. Salmonella sopB deletion mutants are impaired in their ability to cause local inflammatory responses and fluid secretion into the intestinal lumen and also can enhance the immunogenicity of a vectored antigen. In this study, we evaluated the effects on immunogenicity and the efficacy of a sopB deletion mutation on two Salmonella enterica serovar Typhimurium vaccine strains with different attenuating mutations expressing a highly antigenic α-helical region of the Streptococcus pneumoniae surface protein PspA from an Asd+-balanced lethal plasmid. After oral administration to mice, the two pairs of strains induced high levels of serum antibodies specific for PspA as well as to Salmonella antigens. The levels of antigen-specific serum immunoglobulin G (IgG) and mucosal IgA were higher in mice immunized with sopB mutants. Enzyme-linked immunospot assay results indicated that the spleen cells from mice immunized with a sopB mutant showed higher interleukin-4 and gamma interferon secretion levels than did the mice immunized with the isogenic sopB+ strain. The sopB mutants also induced higher numbers of CD4+ CD44hi CD62Lhi and CD8+ CD44hi CD62Lhi central memory T cells. Eight weeks after primary oral immunization, mice were challenged with 100 50% lethal doses of virulent S. pneumoniae WU2. Immunization with either of the sopB mutant strains led to increased levels of protection compared to that with the isogenic sopB+ parent. Together, these results demonstrate that the deletion of sopB leads to an overall enhancement of the immunogenicity and efficacy of recombinant attenuated Salmonella vaccine strains.


Infection and Immunity | 2011

Immunization with Salmonella enterica serovar Typhimurium-derived outer membrane vesicles delivering the pneumococcal protein PspA confers protection against challenge with Streptococcus pneumoniae.

Maneesha Muralinath; Meta J. Kuehn; Kenneth L. Roland; Roy Curtiss

ABSTRACT Gram-negative bacteria produce outer membrane vesicles (OMVs) that serve a variety of functions related to survival and pathogenicity. Periplasmic and outer membrane proteins are naturally captured during vesicle formation. This property has been exploited as a method to derive immunogenic vesicle preparations for use as vaccines. In this work, we constructed a Salmonella enterica serovar Typhimurium strain that synthesized a derivative of the pneumococcal protein PspA engineered to be secreted into the periplasmic space. Vesicles isolated from this strain contained PspA in the lumen. Mice intranasally immunized with the vesicle preparation developed serum antibody responses against vesicle components that included PspA and Salmonella-derived lipopolysaccharide and outer membrane proteins, while no detectable responses developed in mice immunized with an equivalent dose of purified PspA. Mucosal IgA responses developed against the Salmonella components, while the response to PspA was less apparent in most mice. Mice immunized with the vesicle preparation were completely protected against a 10× 50% lethal dose (LD50) challenge of Streptococcus pneumoniae and significantly protected against a 200× LD50 challenge, while control mice immunized with purified PspA or empty vesicles were not protected. These results establish that vesicles can be used to mucosally deliver an antigen from a Gram-positive organism and induce a protective immune response.


PLOS ONE | 2010

Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen

Huoying Shi; Javier Santander; Karen E. Brenneman; Soo Young Wanda; Shifeng Wang; Patti Senechal; Wei Sun; Kenneth L. Roland; Roy Curtiss

We hypothesized that the immunogenicity of live Salmonella enterica serovar Typhi vaccines expressing heterologous antigens depends, at least in part, on its rpoS status. As part of our project to develop a recombinant attenuated S. Typhi vaccine (RASTyV) to prevent pneumococcal diseases in infants and children, we constructed three RASTyV strains synthesizing the Streptococcus pneumoniae surface protein PspA to test this hypothesis. Each vector strain carried ten engineered mutations designed to optimize safety and immunogenicity. Two S. Typhi vector strains (χ9639 and χ9640) were derived from the rpoS mutant strain Ty2 and one (χ9633) from the RpoS+ strain ISP1820. In χ9640, the nonfunctional rpoS gene was replaced with the functional rpoS gene from ISP1820. Plasmid pYA4088, encoding a secreted form of PspA, was moved into the three vector strains. The resulting RASTyV strains were evaluated for safety in vitro and for immunogenicity in mice. All three RASTyV strains were similar to the live attenuated typhoid vaccine Ty21a in their ability to survive in human blood and human monocytes. They were more sensitive to complement and were less able to survive and persist in sewage and surface water than their wild-type counterparts. Adult mice intranasally immunized with any of the RASTyV strains developed immune responses against PspA and Salmonella antigens. The RpoS+ vaccines induced a balanced Th1/Th2 immune response while the RpoS− strain χ9639(pYA4088) induced a strong Th2 immune response. Immunization with any RASTyV provided protection against S. pneumoniae challenge; the RpoS+ strain χ9640(pYA4088) provided significantly greater protection than the ISP1820 derivative, χ9633(pYA4088). In the pre-clinical setting, these strains exhibited a desirable balance between safety and immunogenicity and are currently being evaluated in a Phase 1 clinical trial to determine which of the three RASTyVs has the optimal safety and immunogenicity profile in human hosts.


Infection and Immunity | 2010

Salmonella vaccine vectors displaying delayed antigen synthesis in vivo to enhance immunogenicity.

Shifeng Wang; Yuhua Li; Giorgio Scarpellini; Wei Kong; Huoying Shi; Chang Ho Baek; Bronwyn M. Gunn; Soo Young Wanda; Kenneth L. Roland; Xin Zhang; Patti Senechal-Willis; Roy Curtiss

ABSTRACT We have developed a regulated delayed antigen synthesis (RDAS) system for use in recombinant attenuated Salmonella vaccine (RASV) strains to enhance immune responses by reducing the adverse effects of high-level antigen synthesis. This system includes a chromosomal repressor gene, lacI, expressed from the arabinose-regulated araC PBAD promoter. LacI serves to regulate expression from a plasmid promoter, Ptrc, that directs antigen synthesis. In the presence of arabinose LacI is produced, which binds to Ptrc, blocking antigen synthesis. In vivo, an arabinose-poor environment, the concentration of LacI decreases with each cell division, allowing increased antigen synthesis. To optimize the system and for comparison, we altered the lacI ribosome-binding site, start codon, and/or codon content to construct RDAS strains χ9095, χ9959, and χ9241, synthesizing from low to high levels of LacI, respectively, and non-RDAS strain χ9555 as a control. We evaluated this system with two test antigens, the green fluorescent protein for initial in vitro assessment and the Streptococcus pneumoniae PspA protein for validation of our system in mice. All RASV strains expressing PspA generated high antilipopolysaccharide antibody titers, indicating that expression of lacI did not interfere with the capacity to induce an immune response. Strain χ9241 induced significantly higher anti-PspA IgG and IgA antibody titers than strain χ9555, which expressed PspA constitutively. Anti-PspA antibody titers were inversely correlated to the level of LacI synthesis. Strain χ9241 also induced significantly greater protective efficacy against challenge with virulent S. pneumoniae. These results suggest that regulated delayed antigen synthesis is useful for improving immunogenicity of RASV strains.


PLOS ONE | 2009

The role of relA and spoT in Yersinia pestis KIM5 pathogenicity.

Wei Sun; Kenneth L. Roland; Christine G. Branger; Xiaoying Kuang; Roy Curtiss

The ppGpp molecule is part of a highly conserved regulatory system for mediating the growth response to various environmental conditions. This mechanism may represent a common strategy whereby pathogens such as Yersinia pestis, the causative agent of plague, regulate the virulence gene programs required for invasion, survival and persistence within host cells to match the capacity for growth. The products of the relA and spoT genes carry out ppGpp synthesis. To investigate the role of ppGpp on growth, protein synthesis, gene expression and virulence, we constructed a ΔrelA ΔspoT Y. pestis mutant. The mutant was no longer able to synthesize ppGpp in response to amino acid or carbon starvation, as expected. We also found that it exhibited several novel phenotypes, including a reduced growth rate and autoaggregation at 26°C. In addition, there was a reduction in the level of secretion of key virulence proteins and the mutant was>1,000-fold less virulent than its wild-type parent strain. Mice vaccinated subcutaneously (s.c.) with 2.5×104 CFU of the ΔrelA ΔspoT mutant developed high anti-Y. pestis serum IgG titers, were completely protected against s.c. challenge with 1.5×105 CFU of virulent Y. pestis and partially protected (60% survival) against pulmonary challenge with 2.0×104 CFU of virulent Y. pestis. Our results indicate that ppGpp represents an important virulence determinant in Y. pestis and the ΔrelA ΔspoT mutant strain is a promising vaccine candidate to provide protection against plague.


Infection and Immunity | 2009

Regulated Delayed Expression of rfaH in an Attenuated Salmonella enterica Serovar Typhimurium Vaccine Enhances Immunogenicity of Outer Membrane Proteins and a Heterologous Antigen

Qingke Kong; Qing Liu; Kenneth L. Roland; Roy Curtiss

ABSTRACT RfaH is a transcriptional antiterminator that reduces the polarity of long operons encoding secreted and surface-associated cell components of Salmonella enterica serovar Typhimurium, including O antigen and lipopolysaccharide core sugars. A ΔrfaH mutant strain is attenuated in mice (50% lethal dose [LD50], >108 CFU). To examine the potential for using rfaH in conjunction with other attenuating mutations, we designed a series of strains in which we replaced the native rfaH promoter with the tightly regulated arabinose-dependent araC PBAD promoter so that rfaH expression was dependent on exogenously supplied arabinose provided during in vitro growth. Following colonization of host lymphoid tissues, where arabinose was not available, the PBAD promoter was no longer active and rfaH was not expressed. In the absence of RfaH, O antigen and core sugars were not synthesized. We constructed three mutant strains that expressed different levels of RfaH by altering the ribosome-binding sequence and start codon. One mutation, ΔPrfaH178, was introduced into the attenuated vaccine strain χ9241 (ΔpabA ΔpabB ΔasdA) expressing the pneumococcal surface protein PspA from an Asd+ balanced-lethal plasmid. Mice immunized with this strain and boosted 4 weeks later induced higher levels of serum immunoglobulin G specific for PspA and for outer membrane proteins from other enteric bacteria than either an isogenic ΔrfaH derivative or the isogenic RfaH+ parent. Eight weeks after primary oral immunization, mice were challenged with 200 LD50 of virulent Streptococcuspneumoniae WU2. Immunization with ΔPrfaH178 mutant strains led to increased levels of protection compared to that of the parent χ9241 and of a ΔrfaH derivative of χ9241.

Collaboration


Dive into the Kenneth L. Roland's collaboration.

Top Co-Authors

Avatar

Roy Curtiss

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Qingke Kong

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qing Liu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shifeng Wang

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Wei Sun

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiseon Yang

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge