Jiseon Yang
Arizona State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiseon Yang.
Infection and Immunity | 2011
Qingke Kong; Jiseon Yang; Qing Liu; Praveen Alamuri; Kenneth L. Roland; Roy Curtiss
ABSTRACT Lipopolysaccharide (LPS) is a major virulence factor of Salmonella enterica serovar Typhimurium and is composed of lipid A, core oligosaccharide (C-OS), and O-antigen polysaccharide (O-PS). While the functions of the gene products involved in synthesis of core and O-antigen have been elucidated, the effect of removing O-antigen and core sugars on the virulence and immunogenicity of Salmonella enterica serovar Typhimurium has not been systematically studied. We introduced nonpolar, defined deletion mutations in waaG (rfaG), waaI (rfaI), rfaH, waaJ (rfaJ), wbaP (rfbP), waaL (rfaL), or wzy (rfc) into wild-type S. Typhimurium. The LPS structure was confirmed, and a number of in vitro and in vivo properties of each mutant were analyzed. All mutants were significantly attenuated compared to the wild-type parent when administered orally to BALB/c mice and were less invasive in host tissues. Strains with ΔwaaG and ΔwaaI mutations, in particular, were deficient in colonization of Peyers patches and liver. This deficiency could be partially overcome in the ΔwaaI mutant when it was administered intranasally. In the context of an attenuated vaccine strain delivering the pneumococcal antigen PspA, all of the mutations tested resulted in reduced immune responses against PspA and Salmonella antigens. Our results indicate that nonreversible truncation of the outer core is not a viable option for developing a live oral Salmonella vaccine, while a wzy mutant that retains one O-antigen unit is adequate for stimulating the optimal protective immunity to homologous or heterologous antigens by oral, intranasal, or intraperitoneal routes of administration.
Vaccine | 2011
Shamaila Ashraf; Wei Kong; Shifeng Wang; Jiseon Yang; Roy Curtiss
Orally administered recombinant attenuated Salmonella vaccines (RASVs) elicit humoral and mucosal immune responses against the immunizing antigen. The challenge in developing an effective vaccine against a virus or an intracellular bacterium delivered by RASVs is to introduce the protective antigen inside the host cell cytoplasm for presentation to MHC-I molecules for an efficient cell mediated immune response. To target the influenza nucleoprotein (NP) into the host cell cytosol, we constructed a regulated delayed lysis in vivo RASV strain χ11246(pYA4858) encoding influenza NP with a chromosomal deletion of the sifA gene to enable it to escape from the endosome prior to lysis. Oral immunization of mice with χ11246(pYA4858) (SifA⁻) with 3 booster immunizations resulted in complete protection (100%) against a lethal influenza virus (rWSN) challenge (100 LD₅₀) compared to 25% survival of mice immunized with the isogenic χ11017(pYA4858) (SifA⁺) strain. Reducing the number of booster immunizations with χ11246(pYA4858) from 3 to 2 resulted in 66% survival of mice challenged with rWSN (100 LD₅₀). Immunization with χ11246(pYA4858) via different routes provided protection in 80% orally, 100% intranasally and 100% intraperitoneally immunized mice against rWSN (100 LD₅₀). A Th1 type immune response was elicited against influenza NP in all experiments. IFN-γ secreting NP₁₄₇₋₁₅₅ specific T cells were not found to be correlated with protection. The role of antigen-specific CD8⁺ T cells remains to be determined. To conclude, we showed that Salmonella can be designed to deliver antigen(s) to the host cell cytosol for presumably class I presentation for the induction of protective immune responses.
Journal of Bacteriology | 2011
Yingqin Luo; Qingke Kong; Jiseon Yang; Greg Golden; Soo-Young Wanda; Roderick V. Jensen; Peter B. Ernst; Roy Curtiss
The Salmonella enterica serovar Typhimurium strain UK-1 exhibits the highest invasion and virulence attributes among the most frequently studied strains. S. Typhimurium UK-1 has been used as the foundation for developing recombinant vaccines and has been used extensively on virulence and colonization studies in chickens and mice. We describe here the complete genome sequence of S. Typhimurium UK-1. Comparative genomics of Salmonella Typhimurium will provide insight into factors that determine virulence and invasion.
Infection and Immunity | 2012
María Dolores Juárez-Rodríguez; Jiseon Yang; Rebin Kader; Praveen Alamuri; Roy Curtiss; Josephine E. Clark-Curtiss
ABSTRACT Live recombinant attenuated Salmonella vaccine (RASV) strains have great potential to induce protective immunity against Mycobacterium tuberculosis by delivering M. tuberculosis antigens. Recently, we reported that, in orally immunized mice, RASV strains delivering the M. tuberculosis early secreted antigenic target 6-kDa (ESAT-6) protein and culture filtrate protein 10 (CFP-10) antigens via the Salmonella type III secretion system (SopE amino-terminal region residues 1 to 80 with two copies of ESAT-6 and one copy of CFP-10 [SopENt80-E2C]) afforded protection against aerosol challenge with M. tuberculosis. Here, we constructed and evaluated an improved Salmonella vaccine against M. tuberculosis. We constructed translational fusions for the synthesis of two copies of ESAT-6 plus CFP-10 fused to the OmpC signal sequence (OmpCSS-E2C) and amino acids 44 to 338 of antigen 85A (Ag85A294) flanked by the signal sequence (SS) and C-terminal peptide (CT) of β-lactamase (BlaSS-Ag85A294-BlaCT) to enable delivery via the Salmonella type II secretion system. The genes expressing these proteins were cloned as an operon transcribed from P trc into isogenic Asd+/MurA+ pYA3681 lysis vector derivatives with different replication origins (pBR, p15A, pSC101), resulting in pYA4890, pYA4891, and pYA4892 for SopENt80-E2C/Ag85A294 synthesis and pYA4893 and pYA4894 for OmpCSS-E2C/Ag85A294 synthesis. Mice orally immunized with the RASV χ11021 strain engineered to display regulated delayed lysis and regulated delayed antigen synthesis in vivo and harboring pYA4891, pYA4893, or pYA4894 elicited significantly greater humoral and cellular immune responses, and the RASV χ11021 strain afforded a greater degree of protection against M. tuberculosis aerosol challenge in mice than RASVs harboring any other Asd+/MurA+ lysis plasmid and immunization with M. bovis BCG, demonstrating that RASV strains displaying regulated delayed lysis with delayed antigen synthesis resulted in highly immunogenic delivery vectors for oral vaccination against M. tuberculosis infection.
PLOS ONE | 2012
Yingqin Luo; Qingke Kong; Jiseon Yang; Arindam Mitra; Greg Golden; Soo Young Wanda; Kenneth L. Roland; Roderick V. Jensen; Peter B. Ernst; Roy Curtiss
Salmonella enterica serovar Typhimurium, a gram-negative facultative rod-shaped bacterium causing salmonellosis and foodborne disease, is one of the most common isolated Salmonella serovars in both developed and developing nations. Several S. Typhimurium genomes have been completed and many more genome-sequencing projects are underway. Comparative genome analysis of the multiple strains leads to a better understanding of the evolution of S. Typhimurium and its pathogenesis. S. Typhimurium strain UK-1 (belongs to phage type 1) is highly virulent when orally administered to mice and chickens and efficiently colonizes lymphoid tissues of these species. These characteristics make this strain a good choice for use in vaccine development. In fact, UK-1 has been used as the parent strain for a number of nonrecombinant and recombinant vaccine strains, including several commercial vaccines for poultry. In this study, we conducted a thorough comparative genome analysis of the UK-1 strain with other S. Typhimurium strains and examined the phenotypic impact of several genomic differences. Whole genomic comparison highlights an extremely close relationship between the UK-1 strain and other S. Typhimurium strains; however, many interesting genetic and genomic variations specific to UK-1 were explored. In particular, the deletion of a UK-1-specific gene that is highly similar to the gene encoding the T3SS effector protein NleC exhibited a significant decrease in oral virulence in BALB/c mice. The complete genetic complements in UK-1, especially those elements that contribute to virulence or aid in determining the diversity within bacterial species, provide key information in evaluating the functional characterization of important genetic determinants and for development of vaccines.
PLOS Neglected Tropical Diseases | 2015
Jiseon Yang; Jennifer Barrila; Kenneth L. Roland; Jacquelyn Kilbourne; C. Mark Ott; Rebecca J. Forsyth; Cheryl A. Nickerson
A distinct pathovar of Salmonella enterica serovar Typhimurium, ST313, has emerged in sub-Saharan Africa as a major cause of fatal bacteremia in young children and HIV-infected adults. D23580, a multidrug resistant clinical isolate of ST313, was previously shown to have undergone genome reduction in a manner that resembles that of the more human-restricted pathogen, Salmonella enterica serovar Typhi. It has since been shown through tissue distribution studies that D23580 is able to establish an invasive infection in chickens. However, it remains unclear whether ST313 can cause lethal disease in a non-human host following a natural course of infection. Herein we report that D23580 causes lethal and invasive disease in a murine model of infection following peroral challenge. The LD50 of D23580 in female BALB/c mice was 4.7 x 105 CFU. Tissue distribution studies performed 3 and 5 days post-infection confirmed that D23580 was able to more rapidly colonize the spleen, mesenteric lymph nodes and gall bladder in mice when compared to the well-characterized S. Typhimurium strain SL1344. D23580 exhibited enhanced resistance to acid stress relative to SL1344, which may lend towards increased capability to survive passage through the gastrointestinal tract as well as during its intracellular lifecycle. Interestingly, D23580 also displayed higher swimming motility relative to SL1344, S. Typhi strain Ty2, and the ST313 strain A130. Biochemical tests revealed that D23580 shares many similar metabolic features with SL1344, with several notable differences in the Voges-Proskauer and catalase tests, as well alterations in melibiose, and inositol utilization. These results represent the first full duration infection study using an ST313 strain following the entire natural course of disease progression, and serve as a benchmark for ongoing and future studies into the pathogenesis of D23580.
npj Microgravity | 2016
Jiseon Yang; Jennifer Barrila; Kenneth L. Roland; C. Mark Ott; Cheryl A. Nickerson
Salmonella enterica serovar Typhimurium strains belonging to sequence type ST313 are a major cause of fatal bacteremia among HIV-infected adults and children in sub-Saharan Africa. Unlike “classical” non-typhoidal Salmonella (NTS), gastroenteritis is often absent during ST313 infections and isolates are most commonly recovered from blood, rather than from stool. This is consistent with observations in animals, in which ST313 strains displayed lower levels of intestinal colonization and higher recovery from deeper tissues relative to classic NTS isolates. A better understanding of the key environmental factors regulating these systemic infections is urgently needed. Our previous studies using dynamic Rotating Wall Vessel (RWV) bioreactor technology demonstrated that physiological levels of fluid shear regulate virulence, gene expression, and stress response profiles of classic S. Typhimurium. Here we provide the first demonstration that fluid shear alters the virulence potential and pathogenesis-related stress responses of ST313 strain D23580 in a manner that differs from classic NTS.
Archive | 2016
Jennifer Barrila; James W. Wilson; Anjali Soni; Jiseon Yang; C. Mark Ott; Cheryl A. Nickerson
As the first bacterial pathogen to be profiled for changes in virulence in response to either spaceflight or spaceflight analogue culture, Salmonella enterica serovar Typhimurium (S. Typhimurium) has served as a model organism for evaluating the potential of these environments to alter the pathogenesis-related characteristics of microbes. This chapter describes a series of progressive studies conducted with S. Typhimurium that have established the paradigm that the low fluid shear environment present during spaceflight and spaceflight analogue culture (as well as in the infected host in vivo) could alter the virulence, pathogenesis-related stress responses, and global gene expression profiles of microbial pathogens like Salmonella. The exciting discovery that these environments could reprogram S. Typhimurium in a unique manner, thereby leading to the identification of entire classes of microbial genes/proteins involved in host interactions not previously identified under conventional culture conditions, laid the foundation for these experiments to be conducted with other microbial pathogens. Follow-up studies with other pathogens ultimately unveiled evolutionarily conserved responses to the microgravity and microgravity analogue environments, including the RNA chaperone Hfq, thus demonstrating that bacteria were “hard-wired” to respond to these conditions. These findings have important implications for astronaut health and hold potential for development of novel strategies for treatment and prevention for the general public.
Infection and Immunity | 2018
Jennifer Barrila; Aurélie Crabbé; Jiseon Yang; Karla Franco; Seth D. Nydam; Rebecca J. Forsyth; Richard Davis; Sandhya Gangaraju; C. Mark Ott; Carolyn B. Coyne; Mina J. Bissell; Cheryl A. Nickerson
Tissues and organs provide the structural and biochemical landscapes upon which microbial pathogens and commensals function to regulate health and disease. While flat two-dimensional (2-D) monolayers composed of a single cell type have provided important insight into understanding host-pathogen interactions and infectious disease mechanisms, these reductionist models lack many essential features present in the native host microenvironment that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). ABSTRACT Tissues and organs provide the structural and biochemical landscapes upon which microbial pathogens and commensals function to regulate health and disease. While flat two-dimensional (2-D) monolayers composed of a single cell type have provided important insight into understanding host-pathogen interactions and infectious disease mechanisms, these reductionist models lack many essential features present in the native host microenvironment that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, and physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review selected 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the rotating wall vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models, and organ-on-a-chip (OAC) models. Collectively, these technologies provide a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial therapies at the intersection of the host, microbe, and their local microenvironments.
npj Microgravity | 2017
Jennifer Barrila; Jiseon Yang; Aurélie Crabbé; Shameema Sarker; Yulong Liu; C. Mark Ott; Mayra Nelman-Gonzalez; Simon J. Clemett; Seth D. Nydam; Rebecca J. Forsyth; Richard Davis; Brian Crucian; Heather Quiriarte; Kenneth L. Roland; Karen E. Brenneman; Clarence Sams; Christine E. Loscher; Cheryl A. Nickerson