Kenneth L. Suder
Glenn Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenneth L. Suder.
Journal of Turbomachinery-transactions of The Asme | 1996
Kenneth L. Suder; Mark L. Celestina
Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part-speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100 percent design speed and at near peak efficiency at 60 percent design speed. The role of the passage shock/ leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only five times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the end-wall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with the primary flow downstream of the rotor at both design and part-speed conditions is also discussed.
ASME Turbo Expo 2000: Power for Land, Sea, and Air | 2000
Kenneth L. Suder; Michael D. Hathaway; Scott A. Thorp; Anthony J. Strazisar; Michelle B. Bright
Mass injection upstream of the tip of a high-speed axial compressor rotor is a stability enhancement approach known to be effective in suppressing stall in tip-critical rotors. This process is examined in a transonic axial compressor rotor through experiments and time-average Navier-Stokes CFD simulations. Measurements and simulations for discrete injection are presented for a range of injection rates and distributions of injectors around the annulus.The simulations indicate that tip injection increases stability by unloading the rotor tip and that increasing injection velocity improves the effectiveness of tip injection. For the tested rotor, experimental results demonstrate that at 70% speed the stalling flow coefficient can be reduced by 30% using an injected massflow equivalent to 1% of the annulus flow. At design speed, the stalling flow coefficient was reduced by 6% using an injected massflow equivalent to 2% of the annulus flow. The experiments show that stability enhancement is related to the mass-averaged axial velocity at the tip. For a given injected massflow, the mass averaged axial velocity at the tip is increased by injecting flow over discrete portions of the circumference as opposed to full-annular injection. The implications of these results on the design of recirculating casing treatments and other methods to enhance stability will be discussed.Copyright
Journal of Turbomachinery-transactions of The Asme | 1998
Kenneth L. Suder
A detailed experimental investigation to understand and quantify the development of blockage in the flow field of a transonic, axial flow compressor rotor (NASA Rotor 37) has been undertaken. Detailed laser anemometer measurements were acquired upstream, within, and downstream of a transonic, axial compressor rotor operating at 100, 85, 80, and 60 percent of design speed, which provided inlet relative Mach numbers at the blade tip of 1.48, 1.26, 1.18, and 0.89, respectively. The impact of the shock on the blockage development, pertaining to both the shock/boundary layer interactions and the shock/tip clearance flow interactions, is discussed. The results indicate that for this rotor the blockage in the endwall region is 2-3 times that of the core flow region, and the blockage in the core flow region more than doubles when the shock strength is sufficient to separate the suction surface boundary layer.
ASME Turbo Expo 2004: Power for Land, Sea, and Air | 2004
Anthony J. Strazisar; Michelle M. Bright; Scott A. Thorp; Dennis E. Culley; Kenneth L. Suder
Experiments that demonstrate the use of endwall recirculation to control the stall of transonic compressor stages are described. Endwall recirculation of a compressor stage is implemented by bleeding air from the casing downstream of a stator blade row and injecting the air as a wall jet upstream of a preceding rotor blade row. The bleed ports, injection ports, and recirculation channels are circumferentially discrete, and occupy only 20–30% of the circumference. The development of compact wall-jet injectors is described first. Next, the results of proof-of-concept steady recirculation tests on a single-stage transonic compressor are presented. Finally, the potential for using endwall recirculation to increase the stability of transonic highly-loaded multistage compressors is demonstrated through results from a rig test of simulated recirculation driving both a steady injected flow and an unsteady injected flow commanded by closed-loop active control during compressor operation at 78–100% of design speed. In this test air from an external source was injected upstream of several rotor blade rows while compressor bleed was increased by an amount equivalent to the injected massflow. During closed loop control, wall static pressure fluctuations were monitored and the injected flow rate was controlled to reduce the stalling mass flow. The use of wall jet injection to study the dynamics of transonic compressor stages is also discussed.Copyright
Journal of Turbomachinery-transactions of The Asme | 1995
D. E. Van Zante; Kenneth L. Suder; Anthony J. Strazisar; Theodore H. Okiishi
The aspirating probe originally designed by Epstein and Ng at MIT was modified by replacing the two platinum-coated tungsten hot wires normally used with platinum-iridium alloy wires. The resulting improved unsteady total pressure and total temperature resolution of the modified probe is demonstrated. Flowfield measurements were made downstream of NASA Rotor 37 for a part-speed operating condition to test the performance of the probe. Time-resolved blade-to-blade total temperature and total pressure as calculated from the two platinum-iridium hot-wire voltages are shown. The flowfield measurements are compared with independent measurements of total pressure with high response transducers and total temperature calculated from laser anemometer measurements. Limitations ofa more often used unsteady temperature data reduction method, which involves only one aspirating probe hot-wire voltage and a high-response pressure measurement, are discussed.
Journal of Turbomachinery-transactions of The Asme | 2002
William B. Roberts; Albert Armin; George Kassaseya; Kenneth L. Suder; Scott A. Thorp; Anthony J. Strazisar
Aircraft fan and compressor blade leading edges suffer from atmospheric particulate erosion that reduces aerodynamic performance. Recontouring the blade leading edge region can restore blade performance. This process typically results in blades of varying chord length. The question therefore arises as to whether performance of refurbished fans and compressors could be further improved if blades of varying chord length are installed into the disk in a certain order. To investigate this issue the aerodynamic performance of a transonic compressor rotor operating with blades of varying chord length was measured in back-to-back compressor test rig entries. One half of the rotor blades were the full nominal chord length while the remaining half of the blades were cut back at the leading edge to 95% of chord length and recontoured. The rotor aerodynamic performance was measured at 100, 80, and 60% of design speed for three blade installation configurations: nominal-chord blades in half of the disk and short-chord blades in half of the disk; four alternating quadrants of nominal-chord and short-chord blades; nominal-chord and short-chord blades alternating around the disk. No significant difference in performance was found between configurations, indicating that blade chord variation is not important to aerodynamic performance above the stall chord limit if leading edges have the same shape. The stall chord limit for most civil aviation turbofan engines is between 94-96% of nominal (new) blade chord.
SAE transactions | 1987
Thomas F. Gelder; James F. Schmidt; Kenneth L. Suder; Michael D. Hathaway
Abstract : The performance capabilities of a fan stator blade row having controlled-diffusion (CD) blade sections were compared with the performance capabilities of a fan stator blade row having double-circular-arc (DCA) blade sections. A CD stator with the same chord length but half the blades of the DCA stator was designed and tested. The same fan rotor (tip speed, 429 m/sec; pressure ratio, 1.64) was used with each stator row. The design and analysis for the CD stator is described. The overall stage and rotor performances with each stator are then compared along with selected stator blades element data. The CD stator efficiency drop (rotor minus stage efficiency, overall) was about one percentage point higher than for the DCA stator at or near design speed because of high losses in the hub region.
51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition | 2013
Kenneth L. Suder; John Delaat; Chis Hughes; Dave Arend; Mark L. Celestina
The NASA Environmentally Responsible Aviation (ERA) Project is focused on developing and demonstrating integrated systems technologies to TRL 4-6 by 2020 that enable reduced fuel burn, emissions, and noise for futuristic air vehicles. The specific goals aim to simultaneously reduce fuel burn by 50%, reduce Landing and Take-off Oxides of Nitrogen emissions by 75% relative to the CAEP 6 guidelines, and reduce cumulative noise by 42 Decibels relative to the Stage 4 guidelines. These goals apply to the integrated vehicle and propulsion system and are based on a reference mission of 3000nm flight of a Boeing 777-200 with GE90 engines. This paper will focus primarily on the ERA propulsion technology portfolio, which consists of advanced combustion, propulsor, and core technologies to enable these integrated air vehicle systems goals. An overview of the ERA propulsion technologies will be described and highlights of the results obtained during the first phase of ERA will be presented.
ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition | 1994
Kenneth L. Suder; Rodrick V. Chima; Anthony J. Strazisar; William B. Roberts
The performance deterioration of a high speed axial compressor rotor due to surface roughness and airfoil thickness variations is reported. A 0.025 mm (0.001 in.) thick rough coating with a surface finish of 2.54-3.18 RMS microns (100-125 RMS microinches) is applied to the pressure and suction surface of the rotor blades. Coating both surfaces increases the leading edge thickness by 10% at the hub and 20% at the tip. Application of this coating results in a loss in efficiency of 6 points and a 9% reduction in the pressure ratio across the rotor at an operating condition near the design point. To separate the effect of thickness and roughness, a smooth coating of equal thickness is also applied to the blade. The smooth coating surface finish is 0.254-0.508 RMS microns (10-20 RMS microinches), compared to the bare metal blade surface finish of 0.508 RMS microns (20 RMS microinches). The smooth coating results in approximately half of the performance deterioration found from the rough coating. Both coatings are then applied to different portions of the blade surface to determine which portions of the airfoil are most sensitive to thickness/roughness variations. Aerodynamic performance measurements are presented for a number of coating configurations at 60%, 80%, and 100% of design speed. The results indicate that thickness/roughness over the first 10% of blade chord accounts for virtually all of the observed performance degradation for the smooth coating, compared to about 70% of the observed performance degradation for the rough coating. The performance deterioration is investigated in more detail at design speed using laser anemometer measurements as well as predictions generated by a quasi-3D Navier-Stokes flow solver which includes a surface roughness model. Measurements and analysis are performed on the baseline blade and the full-coverage smooth and rough coatings. The results indicate that coating the blade causes a thickening of the blade boundary layers. The interaction between the rotor passage shock and the thickened suction surface boundary layer then results in an increase in blockage which reduces the diffusion level in the rear half of the blade passage, thus reducing the aerodynamic performance of the rotor.
ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition | 1994
Kenneth L. Suder; Mark L. Celestina
Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock / leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock / vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with the primary flow downstream of the rotor at both design and part speed conditions is also discussed.Copyright