Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth N. Rosenbaum is active.

Publication


Featured researches published by Kenneth N. Rosenbaum.


Nature Genetics | 2007

Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta

Wayne A. Cabral; Weizhong Chang; Aileen M. Barnes; MaryAnn Weis; Melissa Scott; Sergey Leikin; Elena Makareeva; Natalia Kuznetsova; Kenneth N. Rosenbaum; Cynthia J. Tifft; Dorothy I. Bulas; Chahira Kozma; Peter A. Smith; David R. Eyre; Joan C. Marini

A recessive form of severe osteogenesis imperfecta that is not caused by mutations in type I collagen has long been suspected. Mutations in human CRTAP (cartilage-associated protein) causing recessive bone disease have been reported. CRTAP forms a complex with cyclophilin B and prolyl 3-hydroxylase 1, which is encoded by LEPRE1 and hydroxylates one residue in type I collagen, α1(I)Pro986. We present the first five cases of a new recessive bone disorder resulting from null LEPRE1 alleles; its phenotype overlaps with lethal/severe osteogenesis imperfecta but has distinctive features. Furthermore, a mutant allele from West Africa, also found in African Americans, occurs in four of five cases. All proband LEPRE1 mutations led to premature termination codons and minimal mRNA and protein. Proband collagen had minimal 3-hydroxylation of α1(I)Pro986 but excess lysyl hydroxylation and glycosylation along the collagen helix. Proband collagen secretion was moderately delayed, but total collagen secretion was increased. Prolyl 3-hydroxylase 1 is therefore crucial for bone development and collagen helix formation.


American Journal of Medical Genetics Part A | 2007

Muenke syndrome (FGFR3-related craniosynostosis): expansion of the phenotype and review of the literature.

Emily S Doherty; Felicitas Lacbawan; Donald W. Hadley; Carmen C. Brewer; Christopher Zalewski; H. Jeff Kim; Beth Solomon; Kenneth N. Rosenbaum; Demetrio L. Domingo; Thomas C. Hart; Brian P. Brooks; La Donna Immken; R. Brian Lowry; Virginia E. Kimonis; Alan Shanske; Fernanda Sarquis Jehee; Maria Rita Passos Bueno; Carol Knightly; Donna M. McDonald-McGinn; Elaine H. Zackai; Maximilian Muenke

Muenke syndrome is an autosomal dominant disorder characterized by coronal suture craniosynostosis, hearing loss, developmental delay, carpal and tarsal fusions, and the presence of the Pro250Arg mutation in the FGFR3 gene. Reduced penetrance and variable expressivity contribute to the wide spectrum of clinical findings in Muenke syndrome. To better define the clinical features of this syndrome, we initiated a study of the natural history of Muenke syndrome. To date, we have conducted a standardized evaluation of nine patients with a confirmed Pro250Arg mutation in FGFR3. We reviewed audiograms from an additional 13 patients with Muenke syndrome. A majority of the patients (95%) demonstrated a mild‐to‐moderate, low frequency sensorineural hearing loss. This pattern of hearing loss was not previously recognized as characteristic of Muenke syndrome. We also report on feeding and swallowing difficulties in children with Muenke syndrome. Combining 312 reported cases of Muenke syndrome with data from the nine NIH patients, we found that females with the Pro250Arg mutation were significantly more likely to be reported with craniosynostosis than males (P < 0.01). Based on our findings, we propose that the clinical management should include audiometric and developmental assessment in addition to standard clinical care and appropriate genetic counseling. Published 2007 Wiley‐Liss, Inc.


Pediatric Neurology | 2011

Lovastatin as Treatment for Neurocognitive Deficits in Neurofibromatosis Type 1: Phase I Study

Maria T. Acosta; Peter G. Kardel; Karin S. Walsh; Kenneth N. Rosenbaum; Gerard A. Gioia; Roger J. Packer

In a neurofibromatosis type 1 murine model, treatment with lovastatin reversed cognitive disabilities. We report on a phase I study examining the safety and tolerability of lovastatin in children with neurofibromatosis type 1. Twenty-four children with neurofibromatosis type 1 underwent a dose-escalation protocol for 3 months to identify the maximum tolerated dose and potential toxicity. Minimal side effects were evident, and no child experienced dose-limiting toxicity. Cognitive evaluations were completed before and after treatment, and the results suggested improvement in areas of verbal and nonverbal memory. Additional analyses, using reliable change indices, indicated improvements exceeding those of test-retest or practice effects in some participants. These observations may be analogous to the improvements observed in a neurofibromatosis type 1 murine model treated with lovastatin, although further study and replication are required. The safety and preliminary cognitive results support the need for a larger phase II trial in this population.


Human Mutation | 2010

Molecular Analysis Expands the Spectrum of Phenotypes Associated with GLI3 Mutations

Jennifer J. Johnston; Julie C. Sapp; Joyce T. Turner; David J. Amor; Salim Aftimos; Kyrieckos A. Aleck; Maureen Bocian; Joann Bodurtha; Gerald F. Cox; Cynthia J. Curry; Ruth Day; Dian Donnai; Michael Field; Ikuma Fujiwara; Michael T. Gabbett; Moran Gal; John M. Graham; Peter Hedera; Raoul C. M. Hennekam; Joseph H. Hersh; Robert J. Hopkin; Hülya Kayserili; Alexa Kidd; Virginia E. Kimonis; Angela E. Lin; Sally Ann Lynch; Melissa Maisenbacher; Sahar Mansour; Julie McGaughran; Lakshmi Mehta

A range of phenotypes including Greig cephalopolysyndactyly and Pallister‐Hall syndromes (GCPS, PHS) are caused by pathogenic mutation of the GLI3 gene. To characterize the clinical variability of GLI3 mutations, we present a subset of a cohort of 174 probands referred for GLI3 analysis. Eighty‐one probands with typical GCPS or PHS were previously reported, and we report the remaining 93 probands here. This includes 19 probands (12 mutations) who fulfilled clinical criteria for GCPS or PHS, 48 probands (16 mutations) with features of GCPS or PHS but who did not meet the clinical criteria (sub‐GCPS and sub‐PHS), 21 probands (6 mutations) with features of PHS or GCPS and oral‐facial‐digital syndrome, and 5 probands (1 mutation) with nonsyndromic polydactyly. These data support previously identified genotype–phenotype correlations and demonstrate a more variable degree of severity than previously recognized. The finding of GLI3 mutations in patients with features of oral–facial–digital syndrome supports the observation that GLI3 interacts with cilia. We conclude that the phenotypic spectrum of GLI3 mutations is broader than that encompassed by the clinical diagnostic criteria, but the genotype–phenotype correlation persists. Individuals with features of either GCPS or PHS should be screened for mutations in GLI3 even if they do not fulfill clinical criteria. Hum Mutat 31:1142–1154, 2010.


Journal of Medical Genetics | 2010

Mutations in ZIC2 in Human Holoprosencephaly: Description of a Novel ZIC2-Specific Phenotype and Comprehensive Analysis of 157 Individuals

Benjamin D. Solomon; Felicitas Lacbawan; Sandra Mercier; Nancy J. Clegg; Mauricio R. Delgado; Kenneth N. Rosenbaum; Christèle Dubourg; Véronique David; Ann Haskins Olney; Lars-Erik Wehner; Ute Hehr; Sherri J. Bale; Aimee D.C. Paulussen; Hubert J T Smeets; Emily Hardisty; Anna Tylki-Szymańska; Ewa Pronicka; Michelle Clemens; Elizabeth McPherson; Raoul C. M. Hennekam; Jin S. Hahn; Elaine E. Stashinko; Eric Levey; Dagmar Wieczorek; Elizabeth Roeder; Chayim Can Schell-Apacik; Carol W. Booth; Ronald L. Thomas; Sue Kenwrick; Derek A. T. Cummings

Background Holoprosencephaly (HPE), the most common malformation of the human forebrain, may be due to mutations in genes associated with non-syndromic HPE. Mutations in ZIC2, located on chromosome 13q32, are a common cause of non-syndromic, non-chromosomal HPE. Objective To characterise genetic and clinical findings in patients with ZIC2 mutations. Methods Through the National Institutes of Health and collaborating centres, DNA from approximately 1200 individuals with HPE spectrum disorders was analysed for sequence variations in ZIC2. Clinical details were examined and all other known cases of mutations in ZIC2 were included through a literature search. Results By direct sequencing of DNA samples of an unselected group of unrelated patients with HPE in our NIH laboratory, ZIC2 mutations were found in 8.4% (49/582) of probands. A total of 157 individuals from 119 unrelated kindreds are described, including 141 patients with intragenic sequence determined mutations in ZIC2. Only 39/157 patients have previously been clinically described. Unlike HPE due to mutations in other genes, most mutations occur de novo and the distribution of HPE types differs significantly from that of non-ZIC2 related HPE. Evidence is presented for the presence of a novel facial phenotype which includes bitemporal narrowing, upslanting palpebral fissures, a short nose with anteverted nares, a broad and well demarcated philtrum, and large ears. Conclusions HPE due to ZIC2 mutations is distinct from that due to mutations in other genes. This may shed light on the mechanisms involved in formation of the forebrain and face and will help direct genetic counselling and diagnostic strategies.


Human Mutation | 2012

Haploinsufficiency of SOX5 at 12p12.1 is associated with developmental delays with prominent language delay, behavior problems, and mild dysmorphic features†

Allen N. Lamb; Jill A. Rosenfeld; Nicholas J. Neill; Michael E. Talkowski; Ian Blumenthal; Santhosh Girirajan; Debra Keelean-Fuller; Zheng Fan; Jill Pouncey; Cathy A. Stevens; Loren Mackay-Loder; Deborah Terespolsky; Patricia I. Bader; Kenneth N. Rosenbaum; Stephanie E. Vallee; John B. Moeschler; Roger L. Ladda; Susan Sell; Judith Martin; Shawnia Ryan; Marilyn C. Jones; Rocio Moran; Amy Shealy; Suneeta Madan-Khetarpal; Juliann S. McConnell; Urvashi Surti; Andrée Delahaye; Bénédicte Heron-Longe; Eva Pipiras; Brigitte Benzacken

SOX5 encodes a transcription factor involved in the regulation of chondrogenesis and the development of the nervous system. Despite its important developmental roles, SOX5 disruption has yet to be associated with human disease. We report one individual with a reciprocal translocation breakpoint within SOX5, eight individuals with intragenic SOX5 deletions (four are apparently de novo and one inherited from an affected parent), and seven individuals with larger 12p12 deletions encompassing SOX5. Common features in these subjects include prominent speech delay, intellectual disability, behavior abnormalities, and dysmorphic features. The phenotypic impact of the deletions may depend on the location of the deletion and, consequently, which of the three major SOX5 protein isoforms are affected. One intragenic deletion, involving only untranslated exons, was present in a more mildly affected subject, was inherited from a healthy parent and grandparent, and is similar to a deletion found in a control cohort. Therefore, some intragenic SOX5 deletions may have minimal phenotypic effect. Based on the location of the deletions in the subjects compared to the controls, the de novo nature of most of these deletions, and the phenotypic similarities among cases, SOX5 appears to be a dosage‐sensitive, developmentally important gene. Hum Mutat 33:728–740, 2012.


American Journal of Human Genetics | 2000

Detection of chromosomal aberrations by a whole-genome microsatellite screen.

Marjorie Rosenberg; David Vaske; Christina Killoran; Yi Ning; David S. Wargowski; Louanne Hudgins; Cynthia J. Tifft; Jeanne M. Meck; Jan Blancato; Kenneth N. Rosenbaum; Richard M. Pauli; James L. Weber; Leslie G. Biesecker

Chromosomal aberrations are a common cause of multiple anomaly syndromes that include developmental and growth retardation. Current microscopic techniques are useful for the detection of such aberrations but have a limit of resolution that is above the threshold for phenotypic effect. We hypothesized that a genomewide microsatellite screen could detect chromosomal aberrations that were not detected by standard cytogenetic techniques in a portion of these individuals. To test this hypothesis, we performed a genomewide microsatellite screen of patients, by use of a currently available genetic-marker panel that was originally designed for meiotic mapping of Mendelian traits. We genotyped approximately 400 markers on 17 pairs of parents and their children who had normal karyotypes. By using this approach, we detected and confirmed two cases of segmental aneusomy among 11 children with multiple congenital anomalies. These data demonstrate that a genomewide microsatellite scan can be used to detect chromosomal aberrations that are not detected by microscopic techniques.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2010

Holoprosencephaly due to numeric chromosome abnormalities

Benjamin D. Solomon; Kenneth N. Rosenbaum; Jeanne M. Meck; Maximilian Muenke

Holoprosencephaly (HPE) is the most common malformation of the human forebrain. When a clinician identifies a patient with HPE, a routine chromosome analysis is often the first genetic test sent for laboratory analysis in order to assess for a structural or numerical chromosome anomaly. An abnormality of chromosome number is overall the most frequently identified etiology in a patient with HPE. These abnormalities include trisomy 13, trisomy 18, and triploidy, though several others have been reported. Such chromosome number abnormalities are almost universally fatal early in gestation or in infancy. Clinical features of specific chromosome number abnormalities may be recognized by phenotypic manifestations in addition to the HPE. Published 2010 Wiley‐Liss, Inc.


American Journal of Human Genetics | 2015

Dominant Mutations in KAT6A Cause Intellectual Disability with Recognizable Syndromic Features

Emma Tham; Anna Lindstrand; Avni Santani; Helena Malmgren; Addie Nesbitt; Holly Dubbs; Elaine H. Zackai; Michael J. Parker; Francisca Millan; Kenneth N. Rosenbaum; Golder N. Wilson; Ann Nordgren

Through a multi-center collaboration study, we here report six individuals from five unrelated families, with mutations in KAT6A/MOZ detected by whole-exome sequencing. All five different de novo heterozygous truncating mutations were located in the C-terminal transactivation domain of KAT6A: NM_001099412.1: c.3116_3117 delCT, p.(Ser1039∗); c.3830_3831insTT, p.(Arg1278Serfs∗17); c.3879 dupA, p.(Glu1294Argfs∗19); c.4108G>T p.(Glu1370∗) and c.4292 dupT, p.(Leu1431Phefs∗8). An additional subject with a 0.23 MB microdeletion including the entire KAT6A reading frame was identified with genome-wide array comparative genomic hybridization. Finally, by detailed clinical characterization we provide evidence that heterozygous mutations in KAT6A cause a distinct intellectual disability syndrome. The common phenotype includes hypotonia, intellectual disability, early feeding and oromotor difficulties, microcephaly and/or craniosynostosis, and cardiac defects in combination with subtle facial features such as bitemporal narrowing, broad nasal tip, thin upper lip, posteriorly rotated or low-set ears, and microretrognathia. The identification of human subjects complements previous work from mice and zebrafish where knockouts of Kat6a/kat6a lead to developmental defects.


Journal of Medical Genetics | 1992

Clinical variability of type 1 neurofibromatosis: is there a neurofibromatosis-Noonan syndrome?

Harvey J. Stern; Howard M. Saal; Julia S. Lee; Pamela R. Fain; David E. Goldgar; Kenneth N. Rosenbaum; David F. Barker

Detailed clinical, ophthalmological, and molecular studies were performed on a multigeneration family in which there were many subjects with type 1 neurofibromatosis, a common autosomal dominant disorder. Affected family members displayed a wide range of clinical findings including, in two subjects, features seen in Noonan syndrome (triangular facies, downward slanting palpebral fissures, micrognathia, short stature, and learning disability). Subjects have been described previously whose features have overlapped with neurofibromatosis and Noonan syndrome, and it has been suggested that these persons might represent a separate condition. DNA haplotype analysis showed linkage of the neurofibromatosis phenotype seen in this family to the proximal long arm of chromosome 17 in the region where the type 1 neurofibromatosis gene has been mapped. These results imply that the Noonan phenotype seen in some patients with type 1 neurofibromatosis might be the result of variable or variant expression of the neurofibromatosis gene on chromosome 17. The possible role of non-specific factors, such as fetal hypotonia, in producing the neurofibromatosis-Noonan phenotype needs further investigation. The availability of closely linked and intragenic molecular markers for neurofibromatosis could potentially be useful in the diagnosis and characterisation of patients and families with atypical forms of neurofibromatosis.

Collaboration


Dive into the Kenneth N. Rosenbaum's collaboration.

Top Co-Authors

Avatar

Marshall Summar

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dina J. Zand

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qian Zhao

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Howard M. Saal

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Kazunori Okada

San Francisco State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia J. Tifft

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Roeder

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Raymond W. Sze

Children's National Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge