Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth R. Brouwer is active.

Publication


Featured researches published by Kenneth R. Brouwer.


American Journal of Physiology-gastrointestinal and Liver Physiology | 1999

Biliary excretion in primary rat hepatocytes cultured in a collagen-sandwich configuration

Xingrong Liu; Edward L. LeCluyse; Kenneth R. Brouwer; Liang Sheng L Gan; John J. Lemasters; Bruno Stieger; Peter J. Meier; Kim L. R. Brouwer

The objective of the present investigation was to examine the functional reestablishment of polarity in freshly isolated hepatocytes cultured between 2 layers of gelled collagen (sandwich configuration). Immunoblot analysis demonstrated that the canalicular multispecific organic anion transport protein (multidrug resistance-associated protein, Mrp2) was partially maintained in day 5 hepatocytes cultured in a sandwich configuration. Fluorescein-labeled taurocholate and carboxydichlorofluorescein were excreted into and concentrated in the bile canalicular lumen of day 5 sandwich-cultured hepatocytes, resulting in formation of fluorescent networks in standard buffer (intact bile canaliculi). Confocal microscopy studies demonstrated that 1) carboxydichlorofluorescein that had concentrated in the canalicular lumen was released into the incubation buffer in the presence of Ca(2+)-free buffer (disrupted bile canaliculi), and 2) rhodamine-dextran, an extracellular space marker, was only able to diffuse into the canalicular lumen in the presence of Ca(2+)-free buffer. The cumulative uptake of [(3)H]taurocholate in day 5 sandwich-cultured hepatocytes was significantly higher in standard buffer compared with Ca(2+)-free buffer, due to accumulation of taurocholate in canalicular spaces. When [(3)H]taurocholate was preloaded in the day 5 sandwich-cultured hepatocytes, taurocholate efflux was greater in Ca(2+)-free compared with standard buffer. The biliary excretion index of taurocholate, equivalent to the percentage of retained taurocholate in the canalicular networks, increased from approximately 8% at day 0 to approximately 60% at day 5 in sandwich-cultured hepatocytes. In summary, hepatocytes cultured in a collagen-sandwich configuration for up to 5 days establish intact canalicular networks, maintain Mrp2, reestablish polarized excretion of organic anions and bile acids, and represent a useful in vitro model system to investigate the hepatobiliary disposition of substrates.The objective of the present investigation was to examine the functional reestablishment of polarity in freshly isolated hepatocytes cultured between 2 layers of gelled collagen (sandwich configuration). Immunoblot analysis demonstrated that the canalicular multispecific organic anion transport protein (multidrug resistance-associated protein, Mrp2) was partially maintained in day 5 hepatocytes cultured in a sandwich configuration. Fluorescein-labeled taurocholate and carboxydichlorofluorescein were excreted into and concentrated in the bile canalicular lumen of day 5sandwich-cultured hepatocytes, resulting in formation of fluorescent networks in standard buffer (intact bile canaliculi). Confocal microscopy studies demonstrated that 1) carboxydichlorofluorescein that had concentrated in the canalicular lumen was released into the incubation buffer in the presence of Ca2+-free buffer (disrupted bile canaliculi), and 2) rhodamine-dextran, an extracellular space marker, was only able to diffuse into the canalicular lumen in the presence of Ca2+-free buffer. The cumulative uptake of [3H]taurocholate in day 5 sandwich-cultured hepatocytes was significantly higher in standard buffer compared with Ca2+-free buffer, due to accumulation of taurocholate in canalicular spaces. When [3H]taurocholate was preloaded in the day 5sandwich-cultured hepatocytes, taurocholate efflux was greater in Ca2+-free compared with standard buffer. The biliary excretion index of taurocholate, equivalent to the percentage of retained taurocholate in the canalicular networks, increased from ∼8% at day 0 to ∼60% at day 5 in sandwich-cultured hepatocytes. In summary, hepatocytes cultured in a collagen-sandwich configuration for up to 5 days establish intact canalicular networks, maintain Mrp2, reestablish polarized excretion of organic anions and bile acids, and represent a useful in vitro model system to investigate the hepatobiliary disposition of substrates.


Biochemical Pharmacology | 1999

P-glycoprotein-mediated transport of morphine in brain capillary endothelial cells

Stephen P. Letrent; Joseph W. Polli; Joan E. Humphreys; Gary M. Pollack; Kenneth R. Brouwer; Kim L. R. Brouwer

Cell accumulation, transendothelial permeability, and efflux studies were conducted in bovine brain capillary endothelial cells (BBCECs) to assess the role of P-glycoprotein (P-gp) in the blood-brain barrier (BBB) transport of morphine in the presence and absence of P-gp inhibitors. Cellular accumulation of morphine and rhodamine 123 was enhanced by the addition of the P-gp inhibitors N-{4-[2-(1,2,3,4-tetrahydro-6,7dimethoxy-2-isoquinolinyl)-ethyl]-phenyl}-9,10-dihydro-5-methoxy-9- carboxamide (GF120918), verapamil, and cyclosporin A. Positive (rhodamine 123) and negative (sucrose and propranolol) controls for P-gp transport also were assessed. Morphine glucuronidation was not detected, and no alterations in the accumulation of propranolol or sucrose were observed. Transendothelial permeability studies of morphine and rhodamine 123 demonstrated vectorial transport. The basolateral to apical (B:A) fluxes of morphine (50 microM) and rhodamine (1 microM) were approximately 50 and 100% higher than the fluxes from the apical to the basolateral direction (A:B), respectively. Decreasing the extracellular concentration of morphine to 0.1 microM resulted in a 120% difference between the B:A and A:B permeabilities. The addition of GF120918 abolished any significant directionality in transport rates across the endothelial cells. Efflux studies showed that the loss of morphine from BBCECs was temperature- and energy-dependent and was reduced in the presence of P-gp inhibitors. These observations indicate that morphine is transported by P-gp out of the brain capillary endothelium and that the BBB permeability of morphine may be altered in the presence of P-gp inhibitors.


Pharmaceutical Research | 1998

Effect of GF120918, a potent P-glycoprotein inhibitor, on morphine pharmacokinetics and pharmacodynamics in the rat.

Stephen P. Letrent; Gary M. Pollack; Kenneth R. Brouwer; Kim L. R. Brouwer

AbstractPurpose. The objective of this study was to evaluate the effect of a potent P-gp inhibitor, GF120918, on the systemic pharmacokinetics and antinociceptive pharmacodynamics of a single intravenous dose of morphine in rats. Methods. Male Sprague-Dawley rats received either 500 mg base/kg/d GF120918 or vehicle for 4 days by gavage, or no pretreatment. On day 4, morphine was administered as a 1- or 2-mg/kg i.v. bolus. Antinociception, expressed as percent of maximum possible response (%MPR), was evaluated over 300 min after morphine administration. Serial blood samples were collected and analyzed for morphine and morphine-3-glucuronide (M3G) by HPLC. Results. Morphine clearance and distribution volume were not altered significantly by GF120918. M3G AUC in the GF120918-treated rats was approximately 2-fold higher than in vehicle-treated rats. For both morphine doses, %MPR and the area under the effect-time curve at 300 min were significantly higher in the GF120918-treated rats. A pharmacokinetic/pharmacodynamic effect model accurately described the effect-concentration data for the rats that received 1-mg/kg morphine; ke0 was significantly smaller for GF 120918- vs. vehicle-treated and control rats (0.060 ± 0.028 vs. 0.228 ± 0.101 vs. 0.274 ± 0.026 min−1, p=0.0023). EC50 and γ were similar between treatment groups. Conclusions. Pretreatment with GF 120918 enhanced morphine antinociception, as assessed by the hot-lamp tail-flick assay, and elevated systemic M3G concentrations in rats. The differential pharmacologic response to morphine in the GF120918-treated animals could not be attributed to alterations in systemic morphine pharmacokinetics.


Pharmaceutical Research | 1998

Partial maintenance of taurocholate uptake by adult rat hepatocytes cultured in a collagen sandwich configuration

Xingrong Liu; Kim L. R. Brouwer; Liang Sheng L Gan; Kenneth R. Brouwer; Bruno Stieger; Peter J. Meier; Kenneth L. Audus; Edward L. LeCluyse

AbstractPurpose. This study was designed to characterize taurocholate uptake properties in primary cultures of rat hepatocytes maintained under different matrix conditions. Methods. Hepatocytes isolated from male Wistar rats (230−280 g) were cultured on a simple collagen film, on a substratum of gelled collagen or between two layers of gelled collagen (sandwich configuration). Hepatocyte morphology, taurocholate uptake properties, and expression of the sinusoidal transport protein, Na+/taurocholate-cotransporting polypeptide (Ntcp) were examined in these cultures at day 0 and day 5. Results. By day 5, monolayer integrity had deteriorated in simple collagen cultures. In contrast, cell morphology was preserved in hepatocytes maintained in a sandwich configuration. At day 5, taurocholate accumulation at 5 min in hepatocytes cultured on a simple collagen film, on a substratum of gelled collagen, and in a sandwich configuration was ∼13%, 20% and 35% of day-0 levels, respectively, and occurred predominately by a Na+-dependent mechanism. The initial taurocholate uptake rate vs. concentration (1-200 μM) profile was best described by a combined Michaelis-Menten and first-order function. In all cases, the estimated apparent Km values were comparable for day-0 and day-5 hepatocytes (32−41 μM). In contrast, the Vmax values of hepatocytes cultured on a simple collagen film, on gelled collagen and in a sandwich configuration were ∼5, 6 and 14% of the values at day 0, respectively; values for the first-order rate constant were 5-, 3- and 2-fold lower, respectively. Immunoblot analysis indicated that at day 5 Ntcp expression in hepatocytes cultured in a sandwich configuration was greater than in hepatocytes cultured on a simple collagen film. Conclusions. A collagen sandwich configuration reestablishes normal morphology and partially restores bile acid uptake properties in primary cultures of rat hepatocytes.


Drug Metabolism and Disposition | 2010

An In Vitro Assay to Assess Transporter-Based Cholestatic Hepatotoxicity Using Sandwich- Cultured Rat Hepatocytes

John H. Ansede; William Smith; Cassandra H. Perry; Robert L. St. Claire; Kenneth R. Brouwer

Drug-induced cholestasis can result from the inhibition of biliary efflux of bile acids in the liver. Drugs may inhibit the hepatic uptake and/or the biliary efflux of bile acids resulting in an increase in serum concentrations. However, it is the intracellular concentration of bile acids that results in hepatotoxicity, and thus serum concentrations may not necessarily be an appropriate indicator of hepatotoxicity. In this study, sandwich-cultured rat hepatocytes were used as an in vitro model to assess the cholestatic potential of drugs using deuterium-labeled sodium taurocholate (d8-TCA) as a probe for bile acid transport. Eight drugs were tested as putative inhibitors of d8-TCA uptake and efflux. The hepatobiliary disposition of d8-TCA in the absence and presence of drugs was measured by using liquid chromatography/tandem mass spectrometry, and the accumulation (hepatocytes and hepatocytes plus bile), biliary excretion index (BEI), and in vitro biliary clearance (Clbiliary) were reported. Compounds were classified based on inhibition of uptake, efflux, or a combination of both processes. Cyclosporine A and glyburide showed a decrease in total (hepatocytes plus bile) accumulation, an increase in intracellular (hepatocytes only) accumulation, and a decrease in BEI and Clbiliary of d8-TCA, suggesting that efflux was primarily affected. Erythromycin estolate, troglitazone, and bosentan resulted in a decrease in accumulation (total and intracellular), BEI, and Clbiliary of d8-TCA, suggesting that uptake was primarily affected. Determination of a compounds relative effect on bile acid uptake, efflux, and direct determination of alterations in intracellular amounts of bile acids may provide useful mechanistic information on compounds that cause increases in serum bile acids.


Antimicrobial Agents and Chemotherapy | 2002

GF120918, a P-Glycoprotein Modulator, Increases the Concentration of Unbound Amprenavir in the Central Nervous System in Rats

Jeffrey E. Edwards; Kenneth R. Brouwer; Patrick J. McNamara

ABSTRACT The goal of this study was to determine the distribution of unbound amprenavir in the central nervous system (CNS) of rats. The concentration of unbound amprenavir in the extracellular fluid of the brain and the blood was examined in the presence and absence of the MDR modulator GF120918 by microdialysis. The brain-to-blood ratio of amprenavir in the absence and presence of GF120918 was found to be significantly different (P < 0.003; 0.076 and 0.617, respectively). The use of the MDR modulator GF120918 could potentially increase the penetration of human immunodeficiency virus protease inhibitors into the CNS.


PLOS ONE | 2014

Evaluation of the Endothelin Receptor Antagonists Ambrisentan, Bosentan, Macitentan, and Sitaxsentan as Hepatobiliary Transporter Inhibitors and Substrates in Sandwich-Cultured Human Hepatocytes

Eve-Irene Lepist; Hunter Gillies; William Smith; Jia Hao; Cassandra Hubert; Robert L. St. Claire; Kenneth R. Brouwer; Adrian S. Ray

Background Inhibition of the transporter-mediated hepatobiliary elimination of bile salts is a putative mechanism for liver toxicity observed with some endothelin receptor antagonists (ERAs). Methods Sandwich-cultured human hepatocytes were used to study the hepatobiliary distribution and accumulation of exogenous taurocholate, ERAs and endogenous bile acids. The molecular mechanisms for findings in hepatocytes or clinical observations were further explored using either vesicular assays (efflux transporters) or transfected cell-lines (uptake transporters). Inhibition constants (IC50) were measured for the human hepatobiliary transporters bile salt export pump (BSEP), sodium taurocholate cotransporting polypeptide (NTCP), multidrug resistance protein 2 (MRP2), P-glycoprotein (Pgp), breast cancer resistance protein (BCRP), organic anion-transporting polypeptide 1B1 (OATP1B1) and OATP1B3. Results The ERAs showed dose-dependent reductions in exogenous taurocholate cellular accumulation in human hepatocytes, with macitentan having the greatest effect. Consistent with their effects on bile acids, the ERAs inhibited bile transporters. IC50 values for OATP1B1 and OATP1B3 ranged from 2 µM for macitentan to 47 µM for ambrisentan. Macitentan and bosentan also inhibited NTCP with IC50 values of 10 and 36 µM, respectively. Similar to previously reported findings with sitaxsentan, BSEP inhibition was observed for bosentan and macitentan with IC50 values of 42 and 12 µM, respectively. In contrast, ambrisentan showed little or no inhibition of these transporters. Other transporters tested were weakly inhibited by the ERAs. Accumulation in hepatocytes was also a factor in the effects on bile transport. Macitentan demonstrated the greatest accumulation in human hepatocytes (∼100x) followed by sitaxsentan (∼40x), bosentan (∼20x) and ambrisentan (∼2x). Conclusions Significant differences in the inhibition of hepatic transporters were observed between the evaluated ERAs in vitro. Macitentan had the highest level of cellular accumulation and caused the greatest effects on bile acid distribution in human hepatocytes followed by sitaxsentan and bosentan. Ambrisentan showed a low potential to affect bile acids.


Pharmaceutical Research | 1993

Assessment of valproic acid serum-cerebrospinal fluid transport by microdialysis.

Pamela L. Golden; Kenneth R. Brouwer; Gary M. Pollack

The systemic disposition and serum–cerebrospinal fluid (CSF) translocation of valproic acid (VPA) were examined in rats after administration of VPA as a bolus, as a continuous infusion, or with probenecid. VPA in CSF was monitored continuously by in vivo microdialysis. Both prolonged VPA infusion and probenecid pre-treatment increased the Km for saturable VPA elimination and decreased intrinsic hepatic clearance, perhaps due to competition of probenecid or accumulated VPA metabolites for glucuronidation or depletion of hepatic UDP-glucuronic acid. The CSF/serum VPA ratio increased rapidly initially, then decreased with time throughout the remainder of the experiment in all three groups. This time- and/ or concentration-dependent behavior suggested that the rate of CSF penetration increased disproportionately with increasing serum VPA and could be described by a kinetic model incorporating a concentration-dependent first-order rate constant for VPA influx into CSF. Under all experimental conditions, the VPA efflux from CSF appeared to be saturable; an increase in the Michaelis constant for efflux was observed following probenecid pretreatment and during VPA infusion, suggesting competitive inhibition of transport by probenecid and derived metabolites of VPA, respectively. The mechanisms responsible for asymmetric VPA transport between serum and CSF, in particular the apparent concentration-dependent change in the rate constant governing CSF penetration, remain to be elucidated.


Toxicological Sciences | 2016

Inhibition of Human Hepatic Bile Acid Transporters by Tolvaptan and Metabolites: Contributing Factors to Drug-Induced Liver Injury?

Jason R. Slizgi; Yang Lu; Kenneth R. Brouwer; Robert L. St. Claire; Kimberly M. Freeman; Maxwell Pan; William J. Brock; Kim L.R. Brouwer

Tolvaptan is a vasopressin V(2)-receptor antagonist that has shown promise in treating Autosomal Dominant Polycystic Kidney Disease (ADPKD). Tolvaptan was, however, associated with liver injury in some ADPKD patients. Inhibition of bile acid transporters may be contributing factors to drug-induced liver injury. In this study, the ability of tolvaptan and two metabolites, DM-4103 and DM-4107, to inhibit human hepatic transporters (NTCP, BSEP, MRP2, MRP3, and MRP4) and bile acid transport in sandwich-cultured human hepatocytes (SCHH) was explored. IC(50) values were determined for tolvaptan, DM-4103 and DM-4107 inhibition of NTCP (∼41.5, 16.3, and 95.6 μM, respectively), BSEP (31.6, 4.15, and 119 μM, respectively), MRP2 (>50, ∼51.0, and >200 μM, respectively), MRP3 (>50, ∼44.6, and 61.2 μM, respectively), and MRP4 (>50, 4.26, and 37.9 μM, respectively). At the therapeutic dose of tolvaptan (90 mg), DM-4103 exhibited a C(max)/IC(50) value >0.1 for NTCP, BSEP, MRP2, MRP3, and MRP4. Tolvaptan accumulation in SCHH was extensive and not sodium-dependent; intracellular concentrations were ∼500 μM after a 10-min incubation duration with tolvaptan (15 μM). The biliary clearance of taurocholic acid (TCA) decreased by 43% when SCHH were co-incubated with tolvaptan (15 μM) and TCA (2.5 μM). When tolvaptan (15 μM) was co-incubated with 2.5 μM of chenodeoxycholic acid, taurochenodeoxycholic acid, or glycochenodeoxycholic acid in separate studies, the cellular accumulation of these bile acids increased by 1.30-, 1.68-, and 2.16-fold, respectively. Based on these data, inhibition of hepatic bile acid transport may be one of the biological mechanisms underlying tolvaptan-associated liver injury in patients with ADPKD.


Drug Metabolism and Disposition | 2008

Effect of albumin on the biliary clearance of compounds in sandwich-cultured rat hepatocytes

Kristina K. Wolf; Kenneth R. Brouwer; Gary M. Pollack; Kim L. R. Brouwer

The purpose of the present study was to evaluate the effects of bovine serum albumin (BSA) and essentially fatty acid-free BSA (BSA-FAF) on the biliary clearance of compounds in sandwich-cultured rat hepatocytes. Unbound fraction, biliary excretion index (BEI), and unbound intrinsic biliary clearance (intrinsic \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{Cl}_{\mathrm{biliary}}^{{^\prime}}\) \end{document}) were determined for digoxin, pravastatin, and taurocholate in the absence or presence of BSA or BSA-FAF. BSA had little effect on the BEI or intrinsic \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{Cl}_{\mathrm{biliary}}^{{^\prime}}\) \end{document} of these compounds. Surprisingly, BSA-FAF decreased both BEI and intrinsic \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{Cl}_{\mathrm{biliary}}^{{^\prime}}\) \end{document} for digoxin and pravastatin, which represent low and moderately bound compounds, respectively. The BEI and intrinsic \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{Cl}_{\mathrm{biliary}}^{{^\prime}}\) \end{document} of taurocholate, a highly bound compound, were not altered significantly by BSA-FAF. Neither BSA nor BSA-FAF had a discernable effect on the bile canalicular networks based on carboxydichlorofluorescein retention. Neither the addition of physiological concentrations of calcium nor the addition of fatty acids to BSA-FAF was able to restore the BEI or intrinsic \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{Cl}_{\mathrm{biliary}}^{{^\prime}}\) \end{document} of the model compounds to similar values in the absence or presence of BSA. Careful consideration is warranted when selecting the type of BSA for addition to in vitro systems such as sandwich-cultured rat hepatocytes.

Collaboration


Dive into the Kenneth R. Brouwer's collaboration.

Top Co-Authors

Avatar

Kim L. R. Brouwer

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary M. Pollack

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward L. LeCluyse

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xingrong Liu

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge