Kenneth R. Brown
Georgia Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenneth R. Brown.
Physical Review Letters | 2008
Jaroslaw Labaziewicz; Yufei Ge; Paul Antohi; David R. Leibrandt; Kenneth R. Brown; Isaac L. Chuang
Dense arrays of trapped ions provide one way of scaling up ion trap quantum information processing. However, miniaturization of ion traps is currently limited by sharply increasing motional state decoherence at sub-100 mum ion-electrode distances. We characterize heating rates in cryogenically cooled surface-electrode traps, with characteristic sizes in the 75 to 150 mum range. Upon cooling to 6 K, the measured rates are suppressed by 7 orders of magnitude, 2 orders of magnitude below previously published data of similarly sized traps operated at room temperature. The observed noise depends strongly on the fabrication process, which suggests further improvements are possible.
Physical Review A | 2014
C. Monroe; Robert Raussendorf; A. Ruthven; Kenneth R. Brown; Peter Maunz; L.-M. Duan; Jungsang Kim
The practical construction of scalable quantum-computer hardware capable of executing nontrivial quantum algorithms will require the juxtaposition of different types of quantum systems. We analyze a modular ion trap quantum-computer architecture with a hierarchy of interactions that can scale to very large numbers of qubits. Local entangling quantum gates between qubit memories within a single register are accomplished using natural interactions between the qubits, and entanglement between separate registers is completed via a probabilistic photonic interface between qubits in different registers, even over large distances. We show that this architecture can be made fault tolerant, and demonstrate its viability for fault-tolerant execution of modest size quantum circuits.
Physical Review A | 2006
C. E. Pearson; David R. Leibrandt; Waseem Bakr; W. J. Mallard; Kenneth R. Brown; Isaac L. Chuang
Chiaverini et al. [Quantum Inf. Comput. 5, 419 (2005)] recently suggested a linear Paul trap geometry for ion-trap quantum computation that places all of the electrodes in a plane. Such planar ion traps are compatible with modern semiconductor fabrication techniques and can be scaled to make compact, many-zone traps. In this paper we present an experimental realization of planar ion traps using electrodes on a printed circuit board to trap linear chains of tens of charged particles of
Physical Review A | 2004
Kenneth R. Brown; Aram Wettroth Harrow; Isaac L. Chuang
0.44\phantom{\rule{0.3em}{0ex}}\mathrm{\ensuremath{\mu}}\mathrm{m}
Physical Review Letters | 2006
Kenneth R. Brown; Robert J. Clark; Isaac L. Chuang
diameter in a vacuum of
New Journal of Physics | 2011
Jason H. V. Nguyen; C. Ricardo Viteri; Edward G. Hohenstein; C. David Sherrill; Kenneth R. Brown; Brian Odom
15\phantom{\rule{0.3em}{0ex}}\mathrm{Pa}\phantom{\rule{0.3em}{0ex}}({10}^{\ensuremath{-}1}\phantom{\rule{0.3em}{0ex}}\mathrm{torr})
Journal of Applied Physics | 2009
Robert J. Clark; Tongyan Lin; Kenneth R. Brown; Isaac L. Chuang
. With these traps we address concerns about the low trap depth of planar ion traps and develop control electrode layouts for moving ions between trap zones without facing some of the technical difficulties involved in an atomic ion-trap experiment. Specifically, we use a trap with 36 zones (77 electrodes) arranged in a cross to demonstrate loading from a traditional four-rod linear Paul trap, linear ion movement, splitting and joining of ion chains, and movement of ions through intersections. We further propose an additional dc-biased electrode above the trap which increases the trap depth dramatically, and a planar ion-trap geometry that generates a two-dimensional lattice of point Paul traps.
Physical Review A | 2003
Neil Shenvi; Kenneth R. Brown; K. Birgitta Whaley
Systematic errors in quantum operations can be the dominating source of imperfection in achieving control over quantum systems. This problem, which has been well studied in nuclear magnetic resonance, can be addressed by replacing single operations with composite sequences of pulsed operations, which cause errors to cancel by symmetry. Remarkably, this can be achieved without knowledge of the amount of error epsilon. Independent of the initial state of the system, current techniques allow the error to be reduced to O(epsilon^3). Here, we extend the composite pulse technique to cancel errors to O(epsilon^n), for arbitrary n.
New Journal of Physics | 2011
J. True Merrill; Curtis Volin; David W. Landgren; Jason M. Amini; Kenneth Wright; S. Charles Doret; C. S. Pai; Harley Hayden; Tyler N. Killian; Daniel L. Faircloth; Kenneth R. Brown; Alexa W. Harter; Richart E. Slusher
Quantum simulation uses a well-known quantum system to predict the behavior of another quantum system. Certain limitations in this technique arise, however, when applied to specific problems, as we demonstrate with a theoretical and experimental study of an algorithm proposed by Wu, Byrd, and Lidar [Phys. Rev. Lett. 89, 057904 (2002).10.1103/PhysRevLett.89.057904] to find the low-lying spectrum of a pairing Hamiltonian. While the number of elementary quantum gates required scales polynomially with the size of the system, it increases inversely to the desired error bound E. Making such simulations robust to decoherence using fault tolerance requires an additional factor of approximately 1/E gates. These constraints, along with the effects of control errors, are illustrated using a three qubit NMR system.
Physical Review A | 2009
Craig Robert Clark; Tzvetan S. Metodi; Samuel D. Gasster; Kenneth R. Brown
The direct laser cooling of neutral diatomic molecules in molecular beams suggests that trapped molecular ions can also be laser cooled. The long storage time and spatial localization of trapped molecular ions provides an opportunity for multi-step cooling strategies, but also requires careful consideration of rare molecular transitions. We briefly summarize the requirements that a diatomic molecule must meet for laser cooling, and we identify a few potential molecular ion candidates. We then carry out a detailed computational study of the candidates BH+ and AlH+, including improved ab initio calculations of the electronic state potential energy surfaces and transition rates for rare dissociation events. On the basis of an analysis of the population dynamics, we determine which transitions must be addressed for laser cooling, and compare experimental schemes using continuous-wave and pulsed lasers.