Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenrick A. Vassall is active.

Publication


Featured researches published by Kenrick A. Vassall.


PLOS ONE | 2013

The Effects of Threonine Phosphorylation on the Stability and Dynamics of the Central Molecular Switch Region of 18.5-kDa Myelin Basic Protein

Kenrick A. Vassall; Kyrylo Bessonov; Miguel De Avila; Eugenia Polverini; George Harauz

The classic isoforms of myelin basic protein (MBP) are essential for the formation and maintenance of myelin in the central nervous system of higher vertebrates. The protein is involved in all facets of the development, compaction, and stabilization of the multilamellar myelin sheath, and also interacts with cytoskeletal and signaling proteins. The predominant 18.5-kDa isoform of MBP is an intrinsically-disordered protein that is a candidate auto-antigen in the human demyelinating disease multiple sclerosis. A highly-conserved central segment within classic MBP consists of a proline-rich region (murine 18.5-kDa sequence –T92-P93-R94-T95-P96-P97-P98-S99–) containing a putative SH3-ligand, adjacent to a region that forms an amphipathic α-helix (P82-I90) upon interaction with membranes, or under membrane-mimetic conditions. The T92 and T95 residues within the proline-rich region can be post-translationally modified through phosphorylation by mitogen-activated protein (MAP) kinases. Here, we have investigated the structure of the α-helical and proline-rich regions in dilute aqueous buffer, and have evaluated the effects of phosphorylation at T92 and T95 on the stability and dynamics of the α-helical region, by utilizing four 36-residue peptides (S72–S107) with differing phosphorylation status. Nuclear magnetic resonance spectroscopy reveals that both the α-helical as well as the proline-rich regions are disordered in aqueous buffer, whereas they are both structured in a lipid environment (cf., Ahmed et al., Biochemistry 51, 7475-9487, 2012). Thermodynamic analysis of trifluoroethanol-titration curves monitored by circular dichroism spectroscopy reveals that phosphorylation, especially at residue T92, impedes formation of the amphipathic α-helix. This conclusion is supported by molecular dynamics simulations, which further illustrate that phosphorylation reduces the folding reversibility of the α-helix upon temperature perturbation and affect the global structure of the peptides through altered electrostatic interactions. The results support the hypothesis that the central conserved segment of MBP constitutes a molecular switch in which the conformation and/or intermolecular interactions are mediated by phosphorylation/dephosphorylation at T92 and T95.


Biochemical Journal | 2015

MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis

Kenrick A. Vassall; Vladimir V. Bamm; George Harauz

The classic isoforms of myelin basic protein (MBP, 14-21.5 kDa) are essential to formation of the multilamellar myelin sheath of the mammalian central nervous system (CNS). The predominant 18.5-kDa isoform links together the cytosolic surfaces of oligodendrocytes, but additionally participates in cytoskeletal turnover and membrane extension, Fyn-mediated signalling pathways, sequestration of phosphoinositides and maintenance of calcium homoeostasis. All MBP isoforms are intrinsically disordered proteins (IDPs) that interact via molecular recognition fragments (MoRFs), which thereby undergo local disorder-to-order transitions. Their conformations and associations are modulated by environment and by a dynamic barcode of post-translational modifications, particularly phosphorylation by mitogen-activated and other protein kinases and deimination [a hallmark of demyelination in multiple sclerosis (MS)]. The MBPs are thus to myelin what basic histones are to chromatin. Originally thought to be merely structural proteins forming an inert spool, histones are now known to be dynamic entities involved in epigenetic regulation and diseases such as cancer. Analogously, the MBPs are not mere adhesives of compact myelin, but active participants in oligodendrocyte proliferation and in membrane process extension and stabilization during myelinogenesis. A central segment of these proteins is pivotal in membrane-anchoring and SH3 domain (Src homology 3) interaction. We discuss in the present review advances in our understanding of conformational conversions of this classic basic protein upon membrane association, including new thermodynamic analyses of transitions into different structural ensembles and how a shift in the pattern of its post-translational modifications is associated with the pathogenesis and potentially onset of demyelination in MS.


Journal of Biological Chemistry | 2014

Identification of Multiple Phosphorylation Sites on Maize Endosperm Starch Branching Enzyme IIb, a Key Enzyme in Amylopectin Biosynthesis

Amina Makhmoudova; Declan Williams; Dyanne Brewer; Sarah Massey; Jenelle Patterson; Anjali Silva; Kenrick A. Vassall; Fushan Liu; Sanjeena Subedi; George Harauz; K. W. Michael Siu; Ian J. Tetlow; Michael J. Emes

Background: Starch is the major component of cereal yield, yet the biochemical regulation of its synthesis is poorly understood. Results: Starch branching enzyme IIb is phosphorylated at three sites by two Ca2+-dependent protein kinases. Conclusion: Two phosphorylation sites represent a general mechanism of control in plants, the third is cereal specific. Significance: Identification of post-translational regulatory mechanism offers possibilities for targeted manipulation of starch. Starch branching enzyme IIb (SBEIIb) plays a crucial role in amylopectin biosynthesis in maize endosperm by defining the structural and functional properties of storage starch and is regulated by protein phosphorylation. Native and recombinant maize SBEIIb were used as substrates for amyloplast protein kinases to identify phosphorylation sites on the protein. A multidisciplinary approach involving bioinformatics, site-directed mutagenesis, and mass spectrometry identified three phosphorylation sites at Ser residues: Ser649, Ser286, and Ser297. Two Ca2+-dependent protein kinase activities were partially purified from amyloplasts, termed K1, responsible for Ser649 and Ser286 phosphorylation, and K2, responsible for Ser649 and Ser297 phosphorylation. The Ser286 and Ser297 phosphorylation sites are conserved in all plant branching enzymes and are located at opposite openings of the 8-stranded parallel β-barrel of the active site, which is involved with substrate binding and catalysis. Molecular dynamics simulation analysis indicates that phospho-Ser297 forms a stable salt bridge with Arg665, part of a conserved Cys-containing domain in plant branching enzymes. Ser649 conservation appears confined to the enzyme in cereals and is not universal, and is presumably associated with functions specific to seed storage. The implications of SBEIIb phosphorylation are considered in terms of the role of the enzyme and the importance of starch biosynthesis for yield and biotechnological application.


Journal of Molecular Biology | 2015

Thermodynamic Analysis of the Disorder-to-α-Helical Transition of 18.5-kDa Myelin Basic Protein Reveals an Equilibrium Intermediate Representing the Most Compact Conformation

Kenrick A. Vassall; Andrew D. Jenkins; Vladimir V. Bamm; George Harauz

The intrinsically disordered, 18.5-kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that is essential to proper myelin formation in the central nervous system. MBP acts in oligodendrocytes both to adjoin membrane leaflets to each other in forming myelin and as a hub in numerous protein-protein and protein-membrane interaction networks. Like many intrinsically disordered proteins (IDPs), MBP multifunctionality arises from its high conformational plasticity and its ability to undergo reversible disorder-to-order transitions. One such transition is the disorder-to-α-helical conformational change that is induced upon MBP-membrane binding. Here, we have investigated the disorder-to-α-helical transition of MBP-derived α-peptides and the full-length 18.5-kDa protein. This transition was induced through titration of the membrane-mimetic solvent trifluoroethanol into both protein and peptide solutions, and conformational change was monitored using circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid binding, tryptophan fluorescence quenching, and Förster (fluorescence) resonance energy transfer measurements. The data suggest that the disorder-to-α-helical transition of MBP follows a 3-state model: disordered↔intermediate↔α-helical, with each of the identified equilibrium states likely representing a conformational ensemble. The disordered state is characterized by slight compaction with little regular secondary structure, whereas the intermediate is also disordered but globally more compact. Surprisingly, the α-helical conformation is less compact than the intermediate. This study suggests that multifunctionality in MBP could arise from differences in the population of energetically distinct ensembles under different conditions and also provides an example of an IDP that undergoes cooperative global conformation change.


Bioscience Reports | 2014

The proline-rich region of 18.5 kDa myelin basic protein binds to the SH3-domain of Fyn tyrosine kinase with the aid of an upstream segment to form a dynamic complex in vitro

Miguel De Avila; Kenrick A. Vassall; Graham S.T. Smith; Vladimir V. Bamm; George Harauz

The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92–R104, murine 18.5 kDa MBP sequence numbering) that is part of a molecular switch due to its high degree of conservation and modification by MAP (mitogen-activated protein) and other kinases, especially at residues T92 and T95. Here, we show using co-transfection experiments of an early developmental oligodendroglial cell line (N19) that an MBP segment upstream of the primary ligand is involved in MBP–Fyn–SH3 association in cellula. Using solution NMR spectroscopy in vitro, we define this segment to comprise MBP residues (T62–L68), and demonstrate further that residues (V83–P93) are the predominant SH3-target, assessed by the degree of chemical shift change upon titration. We show by chemical shift index analysis that there is no formation of local poly-proline type II structure in the proline-rich segment upon binding, and by NOE (nuclear Overhauser effect) and relaxation measurements that MBP remains dynamic even while complexed with Fyn–SH3. The association is a new example first of a non-canonical SH3-domain interaction and second of a fuzzy MBP complex.


Journal of Molecular Graphics & Modelling | 2013

Parameterization of the proline analogue Aze (azetidine-2-carboxylic acid) for molecular dynamics simulations and evaluation of its effect on homo-pentapeptide conformations.

Kyrylo Bessonov; Kenrick A. Vassall; George Harauz

We have parameterized and evaluated the proline homologue Aze (azetidine-2-carboxylic acid) for the gromos56a3 force-field for use in molecular dynamics simulations using GROMACS. Using bi-phasic cyclohexane/water simulation systems and homo-pentapeptides, we measured the Aze solute interaction potential energies, ability to hydrogen bond with water, and overall compaction, for comparison to Pro, Gly, and Lys. Compared to Pro, Aze has a slightly higher H-bonding potential, and stronger electrostatic but weaker non-electrostatic interactions with water. The 20-ns simulations revealed the preferential positioning of Aze and Pro at the interface of the water and cyclohexane layers, with Aze spending more time in the aqueous layer. We also demonstrated through simulations of the homo-pentapeptides that Aze has a greater propensity than Pro to undergo trans→cis peptide bond isomerization, which results in a severe 180° bend in the polypeptide chain. The results provide evidence for the hypothesis that the misincorporation of Aze within proline-rich regions of proteins could disrupt the formation of poly-proline type II structures and compromise events such as recognition and binding by SH3-domains.


Biochimica et Biophysica Acta | 2016

Substitutions mimicking deimination and phosphorylation of 18.5-kDa myelin basic protein exert local structural effects that subtly influence its global folding

Kenrick A. Vassall; Vladimir V. Bamm; Andrew D. Jenkins; Caroline Velte; Daniel R. Kattnig; Joan M. Boggs; Dariush Hinderberger; George Harauz

Intrinsically-disordered proteins (IDPs) present a complex interplay of conformational variability and multifunctionality, modulated by environment and post-translational modifications. The 18.5-kDa myelin basic protein (MBP) is essential to the formation of the myelin sheath of the central nervous system and is exemplary in this regard. We have recently demonstrated that the unmodified MBP-C1 component undergoes co-operative global conformational changes in increasing concentrations of trifluoroethanol, emulating the decreasing dielectric environment that the protein encounters upon adsorption to the oligodendrocyte membrane [K.A. Vassall et al., Journal of Molecular Biology, 427, 1977-1992, 2015]. Here, we extended this study to the pseudo-deiminated MBP-C8 charge component, one found in greater proportion in developing myelin and in multiple sclerosis. A similar tri-conformational distribution as for MBP-C1 was observed with slight differences in Gibbs free energy. A more dramatic difference was observed by cathepsin D digestion of the protein in both aqueous and membrane environments, which showed significantly greater accessibility of the F42-F43 cut site of MBP-C8, indicative of a global conformational change. In contrast, this modification caused little change in the proteins density of packing on myelin-mimetic membranes as ascertained by double electron-electron resonance spectroscopy [D.R. Kattnig et al., Biochimica et Biophysica Acta (Biomembranes), 1818, 2636-2647, 2012], or in its affinity for Ca(2+)-CaM. Site-specific threonyl pseudo-phosphorylation at residues T92 and/or T95 did not appreciably affect any of the thermodynamic mechanisms of conformational transitions, susceptibility to cathepsin D, or affinity for Ca(2+)-CaM, despite previously having been shown to affect local structure and disposition on the membrane surface.


Biochemical and Biophysical Research Communications | 2015

Myelin basic protein is a glial microtubule-associated protein -- characterization of binding domains, kinetics of polymerization, and regulation by phosphorylation and a lipidic environment.

Agata Zienowicz; Vladimir V. Bamm; Kenrick A. Vassall; George Harauz

The 18.5-kDa splice isoform of myelin basic protein (MBP) predominates in the adult brain, adhering the cytoplasmic leaflets of the oligodendrocyte membrane together, but also assembling the cytoskeleton at leading edges of membrane processes. Here, we characterized MBPs role as a microtubule-assembly protein (MAP). Using light scattering and sedimentation assays we found that pseudo-phosphorylation of Ser54 (murine 18.5-kDa sequence) significantly enhanced the rate but not the final degree of polymerization. This residue lies within a short KPGSG motif identical to one in tau, a ubiquitous MAP important in neuronal microtubule assembly. Using polypeptide constructs, each comprising one of three major amphipathic α-helical molecular recognition fragments of 18.5-kDa MBP, we identified the N-terminal α1-peptide as sufficient to cause microtubule polymerization, the rate of which was significantly enhanced in the presence of dodecylphosphocholine (DPC) micelles to mimic a lipidic environment.


Protein Expression and Purification | 2014

Over-expression in E. coli and purification of functional full-length murine small C-terminal domain phosphatase (SCP1, or Golli-interacting protein).

Sergio Jaramillo-Tatis; Vladimir V. Bamm; Kenrick A. Vassall; George Harauz

During myelination in the central nervous system, proteins arising from the gene in the oligodendrocyte lineage (golli) participate in diverse events in signal transduction and gene regulation. One of the interacting partners of the Golli-isoform BG21 was discovered by yeast-2-hybrid means and was denoted the Golli-interacting-protein (GIP). In subsequent in vitro studies of recombinant murine GIP, it was not possible to produce a full-length version of recombinant murine rmGIP in functional form under native conditions, primarily because of solubility issues, necessitating the study of a hexahistidine-tagged, truncated form ΔN-rmGIP. This protein is an acidic phosphatase belonging to the family of RNA-polymerase-2, small-subunit, C-terminal phosphatases (SCP1), and studies of the human ortholog hSCP1 have also been performed on truncated forms. Here, a new SUMO-expression and purification protocol has been developed for the preparation of a functional, full-length mSCP1/GIP (our nomenclature henceforth), with no additional purification tags. Both full-length mSCP1/GIP and the truncated murine form (now denoted ΔN-rmSCP1/GIP) had similar melting temperatures, indicating that the integrity of the catalytic core per se was minimally affected by the N-terminus. Characterization of mSCP1/GIP activity with the artificial substrate p-NPP (p-nitrophenylphosphate) yielded kinetic parameters comparable to those of ΔN-rmSCP1/GIP and the truncated human ortholog ΔN-hSCP1. Similarly, mSCP1/GIP dephosphorylated a more natural CTD-peptide substrate (but not protein kinase C-phosphorylated BG21) with comparable kinetics to ΔN-hSCP1. The successful production of an active, full-length mSCP1/GIP will enable future evaluation of the functional role of its N-terminus in protein-protein interactions (e.g., BG21) that regulate its phosphatase activity.


Biochemical and Biophysical Research Communications | 2014

Regulatory effect of the glial Golli-BG21 protein on the full-length murine small C-terminal domain phosphatase (SCP1, or Golli-interacting protein)

Sergio Jaramillo-Tatis; Kenrick A. Vassall; Vladimir V. Bamm; George Harauz

Collaboration


Dive into the Kenrick A. Vassall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge