Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenro Oshima is active.

Publication


Featured researches published by Kenro Oshima.


Journal of General Plant Pathology | 2014

Exploring the phytoplasmas, plant pathogenic bacteria

Kensaku Maejima; Kenro Oshima; Shigetou Namba

Phytoplasmas are plant pathogenic bacteria associated with devastating damage to over 700 plant species worldwide. It is agriculturally important to identify factors involved in their pathogenicity and to discover effective measures to control phytoplasma diseases. Despite their economic importance, phytoplasmas remain the most poorly characterized plant pathogens, primarily because efforts at in vitro culture, gene delivery, and mutagenesis have been unsuccessful. However, recent molecular studies have revealed unique biological features of phytoplasmas. This review summarizes the history and recent progress in phytoplasma research, focusing on (1) the discovery of phytoplasmas, (2) molecular classification of phytoplasmas, (3) diagnosis of phytoplasma diseases, (4) reductive evolution of the genomes, (5) characteristic features of the plasmids, (6) molecular mechanisms of insect transmissibility, and (7) virulence factors involved in their unique symptoms.


Plant Journal | 2014

Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody.

Kensaku Maejima; Ryo Iwai; Misako Himeno; Ken Komatsu; Yugo Kitazawa; Naoko Fujita; Kazuya Ishikawa; Misato Fukuoka; Nami Minato; Yasuyuki Yamaji; Kenro Oshima; Shigetou Namba

Plant pathogens alter the course of plant developmental processes, resulting in abnormal morphology in infected host plants. Phytoplasmas are unique plant-pathogenic bacteria that transform plant floral organs into leaf-like structures and cause the emergence of secondary flowers. These distinctive symptoms have attracted considerable interest for many years. Here, we revealed the molecular mechanisms of the floral symptoms by focusing on a phytoplasma-secreted protein, PHYL1, which induces morphological changes in flowers that are similar to those seen in phytoplasma-infected plants. PHYL1 is a homolog of the phytoplasmal effector SAP54 that also alters floral development. Using yeast two-hybrid and in planta transient co-expression assays, we found that PHYL1 interacts with and degrades the floral homeotic MADS domain proteins SEPALLATA3 (SEP3), APETALA1 (AP1) and CAULIFLOWER (CAL). This degradation of MADS domain proteins was dependent on the ubiquitin–proteasome pathway. The expression of floral development genes downstream of SEP3 and AP1 was disrupted in 35S::PHYL1 transgenic plants. PHYL1 was genetically and functionally conserved among other phytoplasma strains and species. We designate PHYL1, SAP54 and their homologs as members of the phyllody-inducing gene family of ‘phyllogens’.


Scientific Reports | 2015

The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways

Nami Minato; Misako Himeno; Ayaka Hoshi; Kensaku Maejima; Ken Komatsu; Yumiko Takebayashi; Hiroyuki Kasahara; Akira Yusa; Yasuyuki Yamaji; Kenro Oshima; Yuji Kamiya; Shigetou Namba

Despite plants infected by pathogens are often unable to produce offspring, it remains unclear how sterility is induced in host plants. In this study, we demonstrate that TENGU, a phytoplasmal virulence peptide known as a dwarfism inducer, acts as an inducer of sterility. Transgenic expression of TENGU induced both male and female sterility in Arabidopsis thaliana flowers similar to those observed in double knockout mutants of auxin response factor 6 (ARF6) and ARF8, which are known to regulate floral development in a jasmonic acid (JA)-dependent manner. Transcripts of ARF6 and ARF8 were significantly decreased in both tengu-transgenic and phytoplasma-infected plants. Furthermore, JA and auxin levels were actually decreased in tengu-transgenic buds, suggesting that TENGU reduces the endogenous levels of phytohormones by repressing ARF6 and ARF8, resulting in impaired flower maturation. TENGU is the first virulence factor with the effects on plant reproduction by perturbation of phytohormone signaling.


The Plant Cell | 2014

In Planta Recognition of a Double-Stranded RNA Synthesis Protein Complex by a Potexviral RNA Silencing Suppressor

Yukari Okano; Hiroko Senshu; Masayoshi Hashimoto; Yutaro Neriya; Osamu Netsu; Nami Minato; Tetsuya Yoshida; Kensaku Maejima; Kenro Oshima; Ken Komatsu; Yasuyuki Yamaji; Shigetou Namba

This work reports the detailed molecular function of TGBp1, a suppressor of RNA silencing encoded by a potexvirus. TGBp1 interacts with SGS3 and RDR6 and aggregates SGS3/RDR6 bodies in the cytoplasm, thereby inhibiting dsRNA synthesis. Thus, this work sheds new light on the dsRNA synthesis–mediated secondary siRNA pathway as another general target of viral suppressors of RNA silencing. RNA silencing plays an important antiviral role in plants and invertebrates. To counteract antiviral RNA silencing, most plant viruses have evolved viral suppressors of RNA silencing (VSRs). TRIPLE GENE BLOCK PROTEIN1 (TGBp1) of potexviruses is a well-characterized VSR, but the detailed mechanism by which it suppresses RNA silencing remains unclear. We demonstrate that transgenic expression of TGBp1 of plantago asiatica mosaic virus (PlAMV) induced developmental abnormalities in Arabidopsis thaliana similar to those observed in mutants of SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6) required for the trans-acting small interfering RNA synthesis pathway. PlAMV-TGBp1 inhibits SGS3/RDR6-dependent double-stranded RNA synthesis in the trans-acting small interfering RNA pathway. TGBp1 interacts with SGS3 and RDR6 and coaggregates with SGS3/RDR6 bodies, which are normally dispersed in the cytoplasm. In addition, TGBp1 forms homooligomers, whose formation coincides with TGBp1 aggregation with SGS3/RDR6 bodies. These results reveal the detailed molecular function of TGBp1 as a VSR and shed new light on the SGS3/RDR6-dependent double-stranded RNA synthesis pathway as another general target of VSRs.


Scientific Reports | 2015

Purple top symptoms are associated with reduction of leaf cell death in phytoplasma-infected plants

Misako Himeno; Yugo Kitazawa; Tetsuya Yoshida; Kensaku Maejima; Yasuyuki Yamaji; Kenro Oshima; Shigetou Namba

Plants exhibit a wide variety of disease symptoms in response to pathogen attack. In general, most plant symptoms are recognized as harmful effects on host plants, and little is known about positive aspects of symptoms for infected plants. Herein, we report the beneficial role of purple top symptoms, which are characteristic of phytoplasma-infected plants. First, by using plant mutants defective in anthocyanin biosynthesis, we demonstrated that anthocyanin accumulation is directly responsible for the purple top symptoms, and is associated with reduction of leaf cell death caused by phytoplasma infection. Furthermore, we revealed that phytoplasma infection led to significant activation of the anthocyanin biosynthetic pathway and dramatic accumulation of sucrose by about 1000-fold, which can activate the anthocyanin biosynthetic pathway. This is the first study to demonstrate the role and mechanism of the purple top symptoms in plant–phytoplasma interactions.


Fems Microbiology Letters | 2014

Onion yellow phytoplasma P38 protein plays a role in adhesion to the hosts

Yutaro Neriya; Kensaku Maejima; Takamichi Nijo; Tatsuya Tomomitsu; Akira Yusa; Misako Himeno; Osamu Netsu; Hiroshi Hamamoto; Kenro Oshima; Shigetou Namba

Adhesins are microbial surface proteins that mediate the adherence of microbial pathogens to host cell surfaces. In Mollicutes, several adhesins have been reported in mycoplasmas and spiroplasmas. Adhesins P40 of Mycoplasma agalactiae and P89 of Spiroplasma citri contain a conserved amino acid sequence known as the Mollicutes adhesin motif (MAM), whose function in the host cell adhesion remains unclear. Here, we show that phytoplasmas, which are plant-pathogenic mollicutes transmitted by insect vectors, possess an adhesion-containing MAM that was identified in a putative membrane protein, PAM289 (P38), of the Candidatus Phytoplasma asteris, OY strain. P38 homologs and their MAMs were highly conserved in related phytoplasma strains. While P38 protein was expressed in OY-infected insect and plant hosts, binding assays showed that P38 interacts with insect extract, and weakly with plant extract. Interestingly, the interaction of P38 with the insect extract depended on MAM. These results suggest that P38 is a phytoplasma adhesin that interacts with the hosts. In addition, the MAM of adhesins is important for the interaction between P38 protein and hosts.


Plant Signaling & Behavior | 2015

Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector, phyllogen

Kensaku Maejima; Yugo Kitazawa; Tatsuya Tomomitsu; Akira Yusa; Yutaro Neriya; Misako Himeno; Yasuyuki Yamaji; Kenro Oshima; Shigetou Namba

Members of the SEPALLATA (SEP) gene sub-family encode class E floral homeotic MADS-domain transcription factors (MADS TFs) that specify the identity of floral organs. The Arabidopsis thaliana genome contains 4 ancestrally duplicated and functionally redundant SEP genes, SEP1–4. Recently, a gene family of unique effectors, phyllogens, was identified as an inducer of leaf-like floral organs in phytoplasmas (plant pathogenic bacteria). While it was shown that phyllogens target some MADS TFs, including SEP3 for degradation, it is unknown whether the other SEPs (SEP1, SEP2, and SEP4) of Arabidopsis are also degraded by them. In this study, we found that all 4 SEP proteins of Arabidopsis are degraded by a phyllogen using a transient co-expression assay in Nicotiana benthamiana. This finding indicates that phyllogens may broadly target class E MADS TFs of plants.


Scientific Reports | 2015

Functional characterization of the principal sigma factor RpoD of phytoplasmas via an in vitro transcription assay

Chihiro Miura; Ken Komatsu; Kensaku Maejima; Takamichi Nijo; Yugo Kitazawa; Tatsuya Tomomitsu; Akira Yusa; Misako Himeno; Kenro Oshima; Shigetou Namba

Phytoplasmas (class, Mollicutes) are insect-transmissible and plant-pathogenic bacteria that multiply intracellularly in both plants and insects through host switching. Our previous study revealed that phytoplasmal sigma factor rpoD of OY-M strain (rpoDOY) could be a key regulator of host switching, because the expression level of rpoDOY was higher in insect hosts than in plant hosts. In this study, we developed an in vitro transcription assay system to identify RpoDOY-dependent genes and the consensus promoter elements. The assay revealed that RpoDOY regulated some housekeeping, virulence, and host–phytoplasma interaction genes of OY-M strain. The upstream region of the transcription start sites of these genes contained conserved –35 and –10 promoter sequences, which were similar to the typical bacterial RpoD-dependent promoter elements, while the –35 promoter elements were variable. In addition, we searched putative RpoD-dependent genes based on these promoter elements on the whole genome sequence of phytoplasmas using in silico tools. The phytoplasmal RpoD seems to mediate the transcription of not only many housekeeping genes as the principal sigma factor, but also the virulence- and host-phytoplasma interaction-related genes exhibiting host-specific expression patterns. These results indicate that more complex mechanisms exist than previously thought regarding gene regulation enabling phytoplasmas to switch hosts.


Journal of Experimental Botany | 2017

Phytoplasma-conserved phyllogen proteins induce phyllody across the Plantae by degrading floral MADS domain proteins

Yugo Kitazawa; Nozomu Iwabuchi; Misako Himeno; Momoka Sasano; Hiroaki Koinuma; Takamichi Nijo; Tatsuya Tomomitsu; Tetsuya Yoshida; Yukari Okano; Nobuyuki Yoshikawa; Kensaku Maejima; Kenro Oshima; Shigetou Namba

Phyllogen, a bacterial virulence factor, induced phyllody in various eudicot species, and had broad-spectrum degradation activity on MADS domain transcription factors of plants, suggesting phyllogen universally functions in plants.


Journal of General Plant Pathology | 2018

First report of ‘Candidatus Phytoplasma malaysianum’ associated with Elaeocarpus yellows of Elaeocarpus zollingeri

Nozomu Iwabuchi; Ai Endo; Norikazu Kameyama; Masaya Satoh; Akio Miyazaki; Hiroaki Koinuma; Yugo Kitazawa; Kensaku Maejima; Yasuyuki Yamaji; Kenro Oshima; Shigetou Namba

Abstract“Elaeocarpus yellows” (ELY) is a widely reported phytoplasma disease of Elaeocarpus zollingeri trees in Japan. The phytoplasma associated with ELY (ELY phytoplasma) had not been identified at the species level because its 16S rRNA sequence had yet to be reported. Here, we report the results of a sequence analysis based on 16S rRNA and secA gene sequences, which showed that the ELY phytoplasma is related to ‘Candidatus Phytoplasma malaysianum’. To our knowledge, this is the first report showing the occurrence of ‘Ca. P. malaysianum’ outside Malaysia and the infection of E. zollingeri by the phytoplasma.

Collaboration


Dive into the Kenro Oshima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge