Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasuyuki Yamaji is active.

Publication


Featured researches published by Yasuyuki Yamaji.


Molecular Plant-microbe Interactions | 2010

Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways.

Ken Komatsu; Masayoshi Hashimoto; Johji Ozeki; Yasuyuki Yamaji; Kensaku Maejima; Hiroko Senshu; Misako Himeno; Yukari Okano; Satoshi Kagiwada; Shigetou Namba

Resistant plants respond rapidly to invading avirulent plant viruses by triggering a hypersensitive response (HR). An HR is accompanied by a restraint of virus multiplication and programmed cell death (PCD), both of which have been observed in systemic necrosis triggered by a successful viral infection. Here, we analyzed signaling pathways underlying the HR in resistance genotype plants and those leading to systemic necrosis. We show that systemic necrosis in Nicotiana benthamiana, induced by Plantago asiatica mosaic virus (PlAMV) infection, was associated with PCD, biochemical features, and gene expression patterns that are characteristic of HR. The induction of necrosis caused by PlAMV infection was dependent on SGT1, RAR1, and the downstream mitogen-activated protein kinase (MAPK) cascade involving MAPKKKalpha and MEK2. However, although SGT1 and RAR1 silencing led to an increased accumulation of PlAMV, silencing of the MAPKKKalpha-MEK2 cascade did not. This observation indicates that viral multiplication is partly restrained even in systemic necrosis induced by viral infection, and that this restraint requires SGT1 and RAR1 but not the MAPKKKalpha-MEK2 cascade. Similarly, although both SGT1 and MAPKKKalpha were essential for the Rx-mediated HR to Potato virus X (PVX), SGT1 but not MAPKKKalpha was involved in the restraint of PVX multiplication. These results suggest that systemic necrosis and HR consist of PCD and a restraint of virus multiplication, and that the latter is induced through unknown pathways independent from the former.


The Plant Cell | 2012

Lectin-Mediated Resistance Impairs Plant Virus Infection at the Cellular Level

Yasuyuki Yamaji; Kensaku Maejima; Ken Komatsu; Takuya Shiraishi; Yukari Okano; Misako Himeno; Kyoko Sugawara; Yutaro Neriya; Nami Minato; Chihiro Miura; Masayoshi Hashimoto; Shigetou Namba

This work identifies jacalin-type lectin that is responsible for resistance to multiple plant viruses belonging to the genus Potexvirus. The isolation and characterization of this lectin sheds light on a novel resistance machinery to plant viruses. Plants possess a multilayered defense response, known as plant innate immunity, to infection by a wide variety of pathogens. Lectins, sugar binding proteins, play essential roles in the innate immunity of animal cells, but the role of lectins in plant defense is not clear. This study analyzed the resistance of certain Arabidopsis thaliana ecotypes to a potexvirus, plantago asiatica mosaic virus (PlAMV). Map-based positional cloning revealed that the lectin gene JACALIN-TYPE LECTIN REQUIRED FOR POTEXVIRUS RESISTANCE1 (JAX1) is responsible for the resistance. JAX1-mediated resistance did not show the properties of conventional resistance (R) protein–mediated resistance and was independent of plant defense hormone signaling. Heterologous expression of JAX1 in Nicotiana benthamiana showed that JAX1 interferes with infection by other tested potexviruses but not with plant viruses from different genera, indicating the broad but specific resistance to potexviruses conferred by JAX1. In contrast with the lectin gene RESTRICTED TEV MOVEMENT1, which inhibits the systemic movement of potyviruses, which are distantly related to potexviruses, JAX1 impairs the accumulation of PlAMV RNA at the cellular level. The existence of lectin genes that show a variety of levels of virus resistance, their targets, and their properties, which are distinct from those of known R genes, suggests the generality of lectin-mediated resistance in plant innate immunity.


Journal of General Virology | 2009

Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection.

Hiroko Senshu; Johji Ozeki; Ken Komatsu; Masayoshi Hashimoto; Kouji Hatada; Michiko Aoyama; Satoshi Kagiwada; Yasuyuki Yamaji; Shigetou Namba

RNA silencing is an important defence mechanism against virus infection, and many plant viruses encode RNA silencing suppressors as a counter defence. In this study, we analysed the RNA silencing suppression ability of multiple virus species of the genus Potexvirus. Nicotiana benthamiana plants exhibiting RNA silencing of a green fluorescent protein (GFP) transgene showed reversal of GFP fluorescence when systemically infected with potexviruses. However, the degree of GFP fluorescence varied among potexviruses. Agrobacterium-mediated transient expression assay in N. benthamiana leaves demonstrated that the triple gene block protein 1 (TGBp1) encoded by these potexviruses has drastically different levels of silencing suppressor activity, and these differences were directly related to variations in the silencing suppression ability during virus infection. These results suggest that suppressor activities differ even among homologous proteins encoded by viruses of the same genus, and that TGBp1 contributes to the variation in the level of RNA silencing suppression by potexviruses. Moreover, we investigated the effect of TGBp1 encoded by Plantago asiatica mosaic virus (PlAMV), which exhibited a strong suppressor activity, on the accumulation of microRNA, virus genomic RNA and virus-derived small interfering RNAs.


Journal of Virology | 2011

A Dual Strategy for the Suppression of Host Antiviral Silencing: Two Distinct Suppressors for Viral Replication and Viral Movement Encoded by Potato Virus M

Hiroko Senshu; Yasuyuki Yamaji; Nami Minato; Takuya Shiraishi; Kensaku Maejima; Masayoshi Hashimoto; Chihiro Miura; Yutaro Neriya; Shigetou Namba

ABSTRACT Viruses encode RNA silencing suppressors to counteract host antiviral silencing. In this study, we analyzed the suppressors encoded by potato virus M (PVM), a member of the genus Carlavirus. In the conventional green fluorescent protein transient coexpression assay, the cysteine-rich protein (CRP) of PVM inhibited both local and systemic silencing, whereas the triple gene block protein 1 (TGBp1) showed suppressor activity only on systemic silencing. Furthermore, to elucidate the roles of these two suppressors during an active viral infection, we performed PVX vector-based assays and viral movement complementation assays. CRP increased the accumulation of viral RNA at the single-cell level and also enhanced viral cell-to-cell movement by inhibiting RNA silencing. However, TGBp1 facilitated viral movement but did not affect viral accumulation in protoplasts. These data suggest that CRP inhibits RNA silencing primarily at the viral replication step, whereas TGBp1 is a suppressor that acts at the viral movement step. Thus, our findings demonstrate a sophisticated viral infection strategy that suppresses host antiviral silencing at two different steps via two mechanistically distinct suppressors. This study is also the first report of the RNA silencing suppressor in the genus Carlavirus.


PLOS ONE | 2011

Dramatic Transcriptional Changes in an Intracellular Parasite Enable Host Switching between Plant and Insect

Kenro Oshima; Yoshiko Ishii; Shigeyuki Kakizawa; Kyoko Sugawara; Yutaro Neriya; Misako Himeno; Nami Minato; Chihiro Miura; Takuya Shiraishi; Yasuyuki Yamaji; Shigetou Namba

Phytoplasmas are bacterial plant pathogens that have devastating effects on the yields of crops and plants worldwide. They are intracellular parasites of both plants and insects, and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments is of considerable interest; however, the mechanisms enabling the “host switching” between plant and insect hosts are poorly understood. Here, we report that phytoplasmas dramatically alter their gene expression in response to “host switching” between plant and insect. We performed a detailed characterization of the dramatic change that occurs in the gene expression profile of Candidatus Phytoplasma asteris OY-M strain (approximately 33% of the genes change) upon host switching between plant and insect. The phytoplasma may use transporters, secreted proteins, and metabolic enzymes in a host-specific manner. As phytoplasmas reside within the host cell, the proteins secreted from phytoplasmas are thought to play crucial roles in the interplay between phytoplasmas and host cells. Our microarray analysis revealed that the expression of the gene encoding the secreted protein PAM486 was highly upregulated in the plant host, which is also observed by immunohistochemical analysis, suggesting that this protein functions mainly when the phytoplasma grows in the plant host. Additionally, phytoplasma growth in planta was partially suppressed by an inhibitor of the MscL osmotic channel that is highly expressed in the plant host, suggesting that the osmotic channel might play an important role in survival in the plant host. These results also suggest that the elucidation of “host switching” mechanism may contribute to the development of novel pest controls.


Archives of Virology | 2010

Significance of eukaryotic translation elongation factor 1A in tobacco mosaic virus infection

Yasuyuki Yamaji; Keitaro Sakurai; Koji Hamada; Ken Komatsu; Johji Ozeki; Akiko Yoshida; Atsushi Yoshii; Takumi Shimizu; Shigetou Namba; Tadaaki Hibi

Eukaryotic translation elongation factor 1A (eEF1A) has been shown to interact with both the viral RNA-dependent RNA polymerase and the 3′-terminal genomic RNA of tobacco mosaic virus (TMV). In this study, we demonstrated that the down-regulation of eEF1A mRNA levels by virus-induced gene silencing using potato virus X vector dramatically reduced the accumulation of TMV RNA and the spread of TMV infection. The translation activity of the eEF1A-silenced Nicotiana benthamiana leaves was not severely affected. Collectively, these results suggest an essential role of eEF1A in TMV infection.


Archives of Virology | 2009

Identification of a novel tobacco DnaJ-like protein that interacts with the movement protein of tobacco mosaic virus.

Takumi Shimizu; Atsushi Yoshii; Keitaro Sakurai; Koji Hamada; Yasuyuki Yamaji; Masashi Suzuki; Shigetou Namba; Tadaaki Hibi

The movement protein (MP) of tobacco mosaic virus (TMV) mediates the transport of viral RNA from infected cells to neighboring uninfected cells via plasmodesmata by interacting with putative host factors. To find such host factors, we screened tobacco proteins using the yeast two-hybrid system. NtMPIP1, a novel subset of DnaJ-like proteins, was identified from a tobacco cDNA library, and its specific interaction with TMV MP was confirmed with an in vitro filter-binding assay. In a deletion analysis, using a series of truncated TMV MPs and NtMPIP1s, at least two regions of TMV MP, amino acid residues 65–86 and 120–185, conferred the ability to interact with the C-terminal domain of NtMPIP1, which is thought to be involved in substrate binding. Virus-induced gene silencing of NtMPIP1 significantly inhibited the spread of TMV. Therefore, it is reasonable to consider that endogenous NtMPIP1 is a host factor involved in virus cell-to-cell spread by interacting with TMV MP.


Plant Journal | 2014

Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody.

Kensaku Maejima; Ryo Iwai; Misako Himeno; Ken Komatsu; Yugo Kitazawa; Naoko Fujita; Kazuya Ishikawa; Misato Fukuoka; Nami Minato; Yasuyuki Yamaji; Kenro Oshima; Shigetou Namba

Plant pathogens alter the course of plant developmental processes, resulting in abnormal morphology in infected host plants. Phytoplasmas are unique plant-pathogenic bacteria that transform plant floral organs into leaf-like structures and cause the emergence of secondary flowers. These distinctive symptoms have attracted considerable interest for many years. Here, we revealed the molecular mechanisms of the floral symptoms by focusing on a phytoplasma-secreted protein, PHYL1, which induces morphological changes in flowers that are similar to those seen in phytoplasma-infected plants. PHYL1 is a homolog of the phytoplasmal effector SAP54 that also alters floral development. Using yeast two-hybrid and in planta transient co-expression assays, we found that PHYL1 interacts with and degrades the floral homeotic MADS domain proteins SEPALLATA3 (SEP3), APETALA1 (AP1) and CAULIFLOWER (CAL). This degradation of MADS domain proteins was dependent on the ubiquitin–proteasome pathway. The expression of floral development genes downstream of SEP3 and AP1 was disrupted in 35S::PHYL1 transgenic plants. PHYL1 was genetically and functionally conserved among other phytoplasma strains and species. We designate PHYL1, SAP54 and their homologs as members of the phyllody-inducing gene family of ‘phyllogens’.


Scientific Reports | 2015

The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways

Nami Minato; Misako Himeno; Ayaka Hoshi; Kensaku Maejima; Ken Komatsu; Yumiko Takebayashi; Hiroyuki Kasahara; Akira Yusa; Yasuyuki Yamaji; Kenro Oshima; Yuji Kamiya; Shigetou Namba

Despite plants infected by pathogens are often unable to produce offspring, it remains unclear how sterility is induced in host plants. In this study, we demonstrate that TENGU, a phytoplasmal virulence peptide known as a dwarfism inducer, acts as an inducer of sterility. Transgenic expression of TENGU induced both male and female sterility in Arabidopsis thaliana flowers similar to those observed in double knockout mutants of auxin response factor 6 (ARF6) and ARF8, which are known to regulate floral development in a jasmonic acid (JA)-dependent manner. Transcripts of ARF6 and ARF8 were significantly decreased in both tengu-transgenic and phytoplasma-infected plants. Furthermore, JA and auxin levels were actually decreased in tengu-transgenic buds, suggesting that TENGU reduces the endogenous levels of phytohormones by repressing ARF6 and ARF8, resulting in impaired flower maturation. TENGU is the first virulence factor with the effects on plant reproduction by perturbation of phytohormone signaling.


Phytopathology | 2008

Cloning and Characterization of the Antigenic Membrane Protein (Amp) Gene and In Situ Detection of Amp from Malformed Flowers Infected with Japanese Hydrangea Phyllody Phytoplasma

Ryo Arashida; Shigeyuki Kakizawa; Yoshiko Ishii; Ayaka Hoshi; H.-Y. Jung; Satoshi Kagiwada; Yasuyuki Yamaji; Kenro Oshima; Shigetou Namba

A Japanese hydrangea phyllody (JHP) disease found throughout Japan causes economic damage to the horticultural industry. JHP phytoplasma-infected Japanese hydrangea plants show several disease symptoms involved in floral malformations, such as virescence, phyllody and proliferation. Here, we cloned and characterized the antigenic membrane protein (Amp) gene homolog from the JHP phytoplasma (JHP-amp), expressed the JHP-Amp protein in Escherichia coli cells, and then obtained an antibody against JHP-Amp. The antibody against JHP-Amp had no cross-reactions with the antibody against the Amp protein from a closely related onion yellows phytoplasma. This serologic specificity is probably due to the high diversity of the hydrophilic domains in the Amp proteins. The in situ detection of the JHP-Amp protein revealed that the JHP phytoplasma was localized to the phloem tissues in the malformed flower. This study shows that the JHP-Amp protein is indeed a membrane protein, which is expressed at detectable level in the JHP phytoplasma-infected hydrangea.

Collaboration


Dive into the Yasuyuki Yamaji's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge