Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kent D. Barbian is active.

Publication


Featured researches published by Kent D. Barbian.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Genome sequence of a serotype M3 strain of group A Streptococcus: Phage-encoded toxins, the high-virulence phenotype, and clone emergence

Stephen B. Beres; Gail L. Sylva; Kent D. Barbian; Benfang Lei; Jessica S. Hoff; Nicole D. Mammarella; Meng Yao Liu; James C. Smoot; Stephen F. Porcella; Larye D. Parkins; David Campbell; Todd M. Smith; John K. McCormick; Donald Y.M. Leung; Patrick M. Schlievert; James M. Musser

Genome sequences are available for many bacterial strains, but there has been little progress in using these data to understand the molecular basis of pathogen emergence and differences in strain virulence. Serotype M3 strains of group A Streptococcus (GAS) are a common cause of severe invasive infections with unusually high rates of morbidity and mortality. To gain insight into the molecular basis of this high-virulence phenotype, we sequenced the genome of strain MGAS315, an organism isolated from a patient with streptococcal toxic shock syndrome. The genome is composed of 1,900,521 bp, and it shares ≈1.7 Mb of related genetic material with genomes of serotype M1 and M18 strains. Phage-like elements account for the great majority of variation in gene content relative to the sequenced M1 and M18 strains. Recombination produces chimeric phages and strains with previously uncharacterized arrays of virulence factor genes. Strain MGAS315 has phage genes that encode proteins likely to contribute to pathogenesis, such as streptococcal pyrogenic exotoxin A (SpeA) and SpeK, streptococcal superantigen (SSA), and a previously uncharacterized phospholipase A2 (designated Sla). Infected humans had anti-SpeK, -SSA, and -Sla antibodies, indicating that these GAS proteins are made in vivo. SpeK and SSA were pyrogenic and toxic for rabbits. Serotype M3 strains with the phage-encoded speK and sla genes increased dramatically in frequency late in the 20th century, commensurate with the rise in invasive disease caused by M3 organisms. Taken together, the results show that phage-mediated recombination has played a critical role in the emergence of a new, unusually virulent clone of serotype M3 GAS.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks

James C. Smoot; Kent D. Barbian; Jamie J. Van Gompel; Laura M. Smoot; Michael S. Chaussee; Gail L. Sylva; Daniel E. Sturdevant; Stacy M. Ricklefs; Stephen F. Porcella; Larye D. Parkins; Stephen B. Beres; David Campbell; Todd M. Smith; Qing Zhang; Vivek Kapur; Judy A. Daly; L. George Veasy; James M. Musser

Acute rheumatic fever (ARF), a sequelae of group A Streptococcus (GAS) infection, is the most common cause of preventable childhood heart disease worldwide. The molecular basis of ARF and the subsequent rheumatic heart disease are poorly understood. Serotype M18 GAS strains have been associated for decades with ARF outbreaks in the U.S. As a first step toward gaining new insight into ARF pathogenesis, we sequenced the genome of strain MGAS8232, a serotype M18 organism isolated from a patient with ARF. The genome is a circular chromosome of 1,895,017 bp, and it shares 1.7 Mb of closely related genetic material with strain SF370 (a sequenced serotype M1 strain). Strain MGAS8232 has 178 ORFs absent in SF370. Phages, phage-like elements, and insertion sequences are the major sources of variation between the genomes. The genomes of strain MGAS8232 and SF370 encode many of the same proven or putative virulence factors. Importantly, strain MGAS8232 has genes encoding many additional secreted proteins involved in human–GAS interactions, including streptococcal pyrogenic exotoxin A (scarlet fever toxin) and two uncharacterized pyrogenic exotoxin homologues, all phage-associated. DNA microarray analysis of 36 serotype M18 strains from diverse localities showed that most regions of variation were phages or phage-like elements. Two epidemics of ARF occurring 12 years apart in Salt Lake City, UT, were caused by serotype M18 strains that were genetically identical, or nearly so. Our analysis provides a critical foundation for accelerated research into ARF pathogenesis and a molecular framework to study the plasticity of GAS genomes.


The Journal of Infectious Diseases | 2005

Evolutionary Origin and Emergence of a Highly Successful Clone of Serotype M1 Group A Streptococcus Involved Multiple Horizontal Gene Transfer Events

Paul Sumby; Steve Porcella; Andres G. Madrigal; Kent D. Barbian; Kimmo Virtaneva; Stacy M. Ricklefs; Daniel E. Sturdevant; Morag R. Graham; Jaana Vuopio-Varkila; Nancy P. Hoe; James M. Musser

To better understand the molecular events involved in the origin of new pathogenic bacteria, we studied the evolution of a highly virulent clone of serotype M1 group A Streptococcus (GAS). Genomic, DNA-DNA microarray, and single-nucleotide polymorphism analyses indicated that this clone evolved through a series of horizontal gene transfer events that involved (1) the acquisition of prophages encoding streptococcal pyrogenic exotoxin A and extracellular DNases and (2) the reciprocal recombination of a 36-kb chromosomal region encoding the extracellular toxins NAD+-glycohydrolase (NADase) and streptolysin O (SLO). These gene transfer events were associated with significantly increased production of SLO and NADase. Virtual identity in the 36-kb region present in contemporary serotype M1 and M12 isolates suggests that a serotype M12 strain served as the donor of this region. Multiple horizontal gene transfer events were a crucial factor in the evolutionary origin and emergence of a very abundant contemporary clone of serotype M1 GAS.


The Journal of Infectious Diseases | 2005

Genome Sequence of a Serotype M28 Strain of Group A Streptococcus: Potential New Insights into Puerperal Sepsis and Bacterial Disease Specificity

Nicole M. Green; Shizhen Zhang; Stephen F. Porcella; Michal J. Nagiec; Kent D. Barbian; Stephen B. Beres; Rance B. LeFebvre; James M. Musser

Puerperal sepsis, a major cause of death of young women in Europe in the 1800s, was due predominantly to the gram-positive pathogen group A Streptococcus. Studies conducted during past decades have shown that serotype M28 strains are the major group A Streptococcus organisms responsible for many of these infections. To begin to increase our understanding of their enrichment in puerperal sepsis, we sequenced the genome of a genetically representative strain. This strain has genes encoding a novel array of prophage virulence factors, cell-surface proteins, and other molecules likely to contribute to host-pathogen interactions. Importantly, genes for 7 inferred extracellular proteins are encoded by a 37.4-kb foreign DNA element that is shared with group B Streptococcus and is present in all serotype M28 strains. Proteins encoded by the 37.4-kb element were expressed extracellularly and in human infections. Acquisition of foreign genes has helped create a disease-specialist clone of this pathogen.


The Journal of Infectious Diseases | 2003

Structure and Distribution of an Unusual Chimeric Genetic Element Encoding Macrolide Resistance in Phylogenetically Diverse Clones of Group A Streptococcus

David J. Banks; Stephen F. Porcella; Kent D. Barbian; Judith M. Martin; James M. Musser

The resistance of group A Streptococcus (GAS) to macrolide antibiotics is now a worldwide problem. Preliminary sequencing of the genome of an erythromycin-resistant serotype M6 clone that was responsible for a pharyngitis outbreak in Pittsburgh, Pennsylvania, was conducted to determine the structure of the genetic element containing the mefA gene, which encodes a macrolide efflux protein. The mefA gene is associated with a 58.8-kb chimeric genetic element composed of a transposon inserted into a prophage. This element also encodes a putative extracellular protein with a cell-wall anchoring motif (LPKTG) located at the carboxyterminus. The mefA element was present in phylogenetically diverse GAS strains isolated throughout the United States. Culture supernatants, prepared after mitomycin C treatment, of a strain representing the outbreak clone contained mefA element DNA in a DNAse-resistant form. Together, these data provide new information about the molecular genetic basis of macrolide resistance and dissemination in GAS strains.


Infection and Immunity | 2002

Characterization of two novel pyrogenic toxin superantigens made by an acute rheumatic fever clone of Streptococcus pyogenes associated with multiple disease outbreaks.

Laura M. Smoot; John McCormick; James C. Smoot; Nancy P. Hoe; Ian Strickland; Robert L. Cole; Kent D. Barbian; Cathleen A. Earhart; Douglas H. Ohlendorf; L. George Veasy; Harry R. Hill; Donald Y.M. Leung; Patrick M. Schlievert; James M. Musser

ABSTRACT The pathogenesis of acute rheumatic fever (ARF) is poorly understood. We identified two contiguous bacteriophage genes, designated speL and speM, encoding novel inferred superantigens in the genome sequence of an ARF strain of serotype M18 group A streptococcus (GAS). speL and speM were located at the same genomic site in 33 serotype M18 isolates, and no nucleotide sequence diversity was observed in the 33 strains analyzed. Furthermore, the genes were absent in 13 non-M18 strains tested. These data indicate a recent acquisition event by a distinct clone of serotype M18 GAS. speL and speM were transcribed in vitro and upregulated in the exponential phase of growth. Purified SpeL and SpeM were pyrogenic and mitogenic for rabbit splenocytes and human peripheral blood mononuclear cells in picogram amounts. SpeL preferentially expanded human T cells expressing T-cell receptors Vβ1, Vβ5.1, and Vβ23, and SpeM had specificity for Vβ1 and Vβ23 subsets, indicating that both proteins had superantigen activity. SpeL was lethal in two animal models of streptococcal toxic shock, and SpeM was lethal in one model. Serologic studies indicated that ARF patients were exposed to serotype M18 GAS, SpeL, and SpeM. The data demonstrate that SpeL and SpeM are pyrogenic toxin superantigens and suggest that they may participate in the host-pathogen interactions in some ARF patients.


Clinical and Vaccine Immunology | 2008

Candidate Antigens for Q Fever Serodiagnosis Revealed by Immunoscreening of a Coxiella burnetii Protein Microarray

Paul A. Beare; Chen Chen; Timo Bouman; Jozelyn Pablo; Berkay Unal; Diane C. Cockrell; Wendy C. Brown; Kent D. Barbian; Stephen F. Porcella; James E. Samuel; Philip L. Felgner; Robert A. Heinzen

ABSTRACT Q fever is a widespread zoonosis caused by Coxiella burnetii. Diagnosis of Q fever is usually based on serological testing of patient serum. The diagnostic antigen of test kits is formalin-fixed phase I and phase II organisms of the Nine Mile reference strain. Deficiencies of this antigen include (i) potential for cross-reactivity with other pathogens; (ii) an inability to distinguish between C. burnetii strains; and (iii) a need to propagate and purify C. burnetii, a difficult and potentially hazardous process. Consequently, there is a need for sensitive and specific serodiagnostic tests utilizing defined antigens, such as recombinant C. burnetii protein(s). Here we describe the use of a C. burnetii protein microarray to comprehensively identify immunodominant antigens recognized by antibody in the context of human C. burnetii infection or vaccination. Transcriptionally active PCR products corresponding to 1,988 C. burnetii open reading frames (ORFs) were generated. Full-length proteins were successfully synthesized from 75% of the ORFs by using an Escherichia coli-based in vitro transcription and translation system (IVTT). Nitrocellulose microarrays were spotted with crude IVTT lysates and probed with sera from acute Q fever patients and individuals vaccinated with Q-Vax. Immune sera strongly reacted with approximately 50 C. burnetii proteins, including previously identified immunogens, an ankyrin repeat-domain containing protein, and multiple hypothetical proteins. Recombinant protein corresponding to selected array-reactive antigens was generated, and the immunoreactivity was confirmed by enzyme-linked immunosorbent assay. This sensitive and high-throughput method for identifying immunoreactive C. burnetii proteins will aid in the development of Q fever serodiagnostic tests based on recombinant antigen.


Journal of Bacteriology | 2007

Genome Sequence Analysis of the Emerging Human Pathogenic Acetic Acid Bacterium Granulibacter bethesdensis

David Greenberg; Stephen F. Porcella; Adrian M. Zelazny; Kimmo Virtaneva; Dan E. Sturdevant; John J. Kupko; Kent D. Barbian; Amenah Babar; David W. Dorward; Steven M. Holland

Chronic granulomatous disease (CGD) is an inherited immune deficiency characterized by increased susceptibility to infection with Staphylococcus, certain gram-negative bacteria, and fungi. Granulibacter bethesdensis, a newly described genus and species within the family Acetobacteraceae, was recently isolated from four CGD patients residing in geographically distinct locales who presented with fever and lymphadenitis. We sequenced the genome of the reference strain of Granulibacter bethesdensis, which was isolated from lymph nodes of the original patient. The genome contains 2,708,355 base pairs in a single circular chromosome, in which 2,437 putative open reading frames (ORFs) were identified, 1,470 of which share sequence similarity with ORFs in the nonpathogenic but related Gluconobacter oxydans genome. Included in the 967 ORFs that are unique to G. bethesdensis are ORFs potentially important for virulence, adherence, DNA uptake, and methanol utilization. GC% values and best BLAST analysis suggested that some of these unique ORFs were recently acquired. Comparison of G. bethesdensis to other known CGD pathogens demonstrated conservation of some putative virulence factors, suggesting possible common mechanisms involved in pathogenesis in CGD. Genotyping of the four patient isolates by use of a custom microarray demonstrated genome-wide variations in regions encoding DNA uptake systems and transcriptional regulators and in hypothetical ORFs. G. bethesdensis is a genetically diverse emerging human pathogen that may have recently acquired virulence factors new to this family of organisms.


Genome Biology and Evolution | 2013

Genome sequencing of Giardia lamblia genotypes A2 and B isolates (DH and GS) and comparative analysis with the genomes of genotypes A1 and E (WB and Pig).

Rodney D. Adam; Eric W. Dahlstrom; Craig Martens; Daniel P. Bruno; Kent D. Barbian; Stacy M. Ricklefs; Matthew M. Hernandez; Nirmala P. Narla; Rima B. Patel; Stephen F. Porcella; Theodore E. Nash

Giardia lamblia (syn G. intestinalis, G. duodenalis) is the most common pathogenic intestinal parasite of humans worldwide and is a frequent cause of endemic and epidemic diarrhea. G. lamblia is divided into eight genotypes (A–H) which infect a wide range of mammals and humans, but human infections are caused by Genotypes A and B. To unambiguously determine the relationship among genotypes, we sequenced GS and DH (Genotypes B and A2) to high depth coverage and compared the assemblies with the nearly completed WB genome and draft sequencing surveys of Genotypes E (P15; pig isolate) and B (GS; human isolate). Our results identified DH as the smallest Giardia genome sequenced to date, while GS is the largest. Our open reading frame analyses and phylogenetic analyses showed that GS was more distant from the other three genomes than any of the other three were from each other. Whole-genome comparisons of DH_A2 and GS_B with the optically mapped WB_A1 demonstrated substantial synteny across all five chromosomes but also included a number of rearrangements, inversions, and chromosomal translocations that were more common toward the chromosome ends. However, the WB_A1/GS_B alignment demonstrated only about 70% sequence identity across the syntenic regions. Our findings add to information presented in previous reports suggesting that GS is a different species of Giardia as supported by the degree of genomic diversity, coding capacity, heterozygosity, phylogenetic distance, and known biological differences from WB_A1 and other G. lamblia genotypes.


Journal of Virology | 2009

Mobilization of Endogenous Retroviruses in Mice after Infection with an Exogenous Retrovirus

Leonard H. Evans; A. S. M. Alamgir; Nick Owens; Nick Weber; Kimmo Virtaneva; Kent D. Barbian; Amenah Babar; Frank Malik; Kyle Rosenke

ABSTRACT Mammalian genomes harbor a large number of retroviral elements acquired as germ line insertions during evolution. Although many of the endogenous retroviruses are defective, several contain one or more intact viral genes that are expressed under certain physiological or pathological conditions. This is true of the endogenous polytropic retroviruses that generate recombinant polytropic murine leukemia viruses (MuLVs). In these recombinants the env gene sequences of exogenous ecotropic MuLVs are replaced with env gene sequences from an endogenous polytropic retrovirus. Although replication-competent endogenous polytropic retroviruses have not been observed, the recombinant polytropic viruses are capable of replicating in numerous species. Recombination occurs during reverse transcription of a virion RNA heterodimer comprised of an RNA transcript from an endogenous polytropic virus and an RNA transcript from an exogenous ecotropic MuLV RNA. It is possible that homodimers corresponding to two full-length endogenous RNA genomes are also packaged. Thus, infection by an exogenous virus may result not only in recombination with endogenous sequences, but also in the mobilization of complete endogenous retrovirus genomes via pseudotyping within exogenous retroviral virions. We report that the infection of mice with an ecotropic virus results in pseudotyping of intact endogenous viruses that have not undergone recombination. The endogenous retroviruses infect and are integrated into target cell genomes and subsequently replicate and spread as pseudotyped viruses. The mobilization of endogenous retroviruses upon infection with an exogenous retrovirus may represent a major interaction of exogenous retroviruses with endogenous retroviruses and may have profound effects on the pathogenicity of retroviral infections.

Collaboration


Dive into the Kent D. Barbian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James M. Musser

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Stacy M. Ricklefs

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James C. Smoot

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Daniel E. Sturdevant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gail L. Sylva

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kimmo Virtaneva

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Larye D. Parkins

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Laura M. Smoot

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stephen B. Beres

Houston Methodist Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge