Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kent E. Carpenter is active.

Publication


Featured researches published by Kent E. Carpenter.


Science | 2010

Global Biodiversity: Indicators of Recent Declines

Stuart H. M. Butchart; Matt Walpole; Ben Collen; Arco J. van Strien; Jörn P. W. Scharlemann; Rosamunde E.A. Almond; Jonathan E. M. Baillie; Bastian Bomhard; Ciaire Brown; John F. Bruno; Kent E. Carpenter; Geneviève M. Carr; Janice Chanson; Anna M. Chenery; Jorge Csirke; Nicholas Davidson; Frank Dentener; Matt Foster; Alessandro Galli; James N. Galloway; Piero Genovesi; Richard D. Gregory; Marc Hockings; Valerie Kapos; Jean-Francois Lamarque; Fiona Leverington; J Loh; Melodie A. McGeoch; Louise McRae; Anahit Minasyan

Global Biodiversity Target Missed In 2002, the Convention on Biological Diversity (CBD) committed to a significant reduction in the rate of biodiversity loss by 2010. There has been widespread conjecture that this target has not been met. Butchart et al. (p. 1164, published online 29 April) analyzed over 30 indicators developed within the CBDs framework. These indicators include the condition or state of biodiversity (e.g., species numbers, population sizes), the pressures on biodiversity (e.g., deforestation), and the responses to maintain biodiversity (e.g., protected areas) and were assessed between about 1970 and 2005. Taken together, the results confirm that we have indeed failed to meet the 2010 targets. An analysis of 30 indicators shows that the Convention on Biological Diversity’s 2010 targets have not been met. In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve a significant reduction in the rate of biodiversity loss by 2010. We compiled 31 indicators to report on progress toward this target. Most indicators of the state of biodiversity (covering species’ population trends, extinction risk, habitat extent and condition, and community composition) showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity (including resource consumption, invasive alien species, nitrogen pollution, overexploitation, and climate change impacts) showed increases. Despite some local successes and increasing responses (including extent and biodiversity coverage of protected areas, sustainable forest management, policy responses to invasive alien species, and biodiversity-related aid), the rate of biodiversity loss does not appear to be slowing.


Science | 2008

One-third of reef-building corals face elevated extinction risk from climate change and local impacts

Kent E. Carpenter; Muhammad Abrar; Greta Aeby; Richard B. Aronson; Stuart Banks; Andrew W. Bruckner; Angel Chiriboga; Jorge Cortés; J. Charles Delbeek; Lyndon DeVantier; Graham J. Edgar; Alasdair J. Edwards; Douglas Fenner; Hector M. Guzman; Bert W. Hoeksema; Gregor Hodgson; Ofri Johan; Wilfredo Y. Licuanan; Suzanne R. Livingstone; Edward R. Lovell; Jennifer A. Moore; David Obura; Domingo Ochavillo; Beth A. Polidoro; William F. Precht; Miledel C. Quibilan; Clarissa Reboton; Zoe T. Richards; Alex D. Rogers; Jonnell C. Sanciangco

The conservation status of 845 zooxanthellate reef-building coral species was assessed by using International Union for Conservation of Nature Red List Criteria. Of the 704 species that could be assigned conservation status, 32.8% are in categories with elevated risk of extinction. Declines in abundance are associated with bleaching and diseases driven by elevated sea surface temperatures, with extinction risk further exacerbated by local-scale anthropogenic disturbances. The proportion of corals threatened with extinction has increased dramatically in recent decades and exceeds that of most terrestrial groups. The Caribbean has the largest proportion of corals in high extinction risk categories, whereas the Coral Triangle (western Pacific) has the highest proportion of species in all categories of elevated extinction risk. Our results emphasize the widespread plight of coral reefs and the urgent need to enact conservation measures.


eLife | 2014

Extinction risk and conservation of the world’s sharks and rays

Nicholas K. Dulvy; Sarah Fowler; John A. Musick; Rachel D. Cavanagh; Peter M. Kyne; Lucy R. Harrison; John K. Carlson; Lindsay N. K. Davidson; Sonja V. Fordham; Malcolm P. Francis; Caroline Pollock; Colin A. Simpfendorfer; George H. Burgess; Kent E. Carpenter; Leonard J. V. Compagno; David A. Ebert; Claudine Gibson; Michelle R. Heupel; Suzanne R. Livingstone; Jonnell C. Sanciangco; John D. Stevens; Sarah Valenti; William T. White

The rapid expansion of human activities threatens ocean-wide biodiversity. Numerous marine animal populations have declined, yet it remains unclear whether these trends are symptomatic of a chronic accumulation of global marine extinction risk. We present the first systematic analysis of threat for a globally distributed lineage of 1,041 chondrichthyan fishes—sharks, rays, and chimaeras. We estimate that one-quarter are threatened according to IUCN Red List criteria due to overfishing (targeted and incidental). Large-bodied, shallow-water species are at greatest risk and five out of the seven most threatened families are rays. Overall chondrichthyan extinction risk is substantially higher than for most other vertebrates, and only one-third of species are considered safe. Population depletion has occurred throughout the world’s ice-free waters, but is particularly prevalent in the Indo-Pacific Biodiversity Triangle and Mediterranean Sea. Improved management of fisheries and trade is urgently needed to avoid extinctions and promote population recovery. DOI: http://dx.doi.org/10.7554/eLife.00590.001


PLOS Currents | 2013

The Tree of Life and a New Classification of Bony Fishes

Ricardo Betancur-R.; Richard E. Broughton; E. O. Wiley; Kent E. Carpenter; J. Andrés López; Chenhong Li; Nancy I. Holcroft; Dahiana Arcila; Millicent D. Sanciangco; James C. Cureton; Feifei Zhang; Thaddaeus J. Buser; Matthew A. Campbell; Jesús A. Ballesteros; Adela Roa-Varón; Stuart C. Willis; W. Calvin Borden; Thaine Rowley; Paulette C. Reneau; Daniel J. Hough; Guoqing Lu; Terry Grande; Gloria Arratia; Guillermo Ortí

The tree of life of fishes is in a state of flux because we still lack a comprehensive phylogeny that includes all major groups. The situation is most critical for a large clade of spiny-finned fishes, traditionally referred to as percomorphs, whose uncertain relationships have plagued ichthyologists for over a century. Most of what we know about the higher-level relationships among fish lineages has been based on morphology, but rapid influx of molecular studies is changing many established systematic concepts. We report a comprehensive molecular phylogeny for bony fishes that includes representatives of all major lineages. DNA sequence data for 21 molecular markers (one mitochondrial and 20 nuclear genes) were collected for 1410 bony fish taxa, plus four tetrapod species and two chondrichthyan outgroups (total 1416 terminals). Bony fish diversity is represented by 1093 genera, 369 families, and all traditionally recognized orders. The maximum likelihood tree provides unprecedented resolution and high bootstrap support for most backbone nodes, defining for the first time a global phylogeny of fishes. The general structure of the tree is in agreement with expectations from previous morphological and molecular studies, but significant new clades arise. Most interestingly, the high degree of uncertainty among percomorphs is now resolved into nine well-supported supraordinal groups. The order Perciformes, considered by many a polyphyletic taxonomic waste basket, is defined for the first time as a monophyletic group in the global phylogeny. A new classification that reflects our phylogenetic hypothesis is proposed to facilitate communication about the newly found structure of the tree of life of fishes. Finally, the molecular phylogeny is calibrated using 60 fossil constraints to produce a comprehensive time tree. The new time-calibrated phylogeny will provide the basis for and stimulate new comparative studies to better understand the evolution of the amazing diversity of fishes.


Environmental Biology of Fishes | 2005

The center of the center of marine shore fish biodiversity: the Philippine Islands

Kent E. Carpenter; Victor G. Springer

SynopsisMultiple datasets show global maxima of marine biodiversity in the Indo–Malay–Philippines archipelago (IMPA). Analysis of distribution data for 2983 species reveals a pattern of richness on a finer scale and identifies a peak of marine biodiversity in the central Philippine Islands and a secondary peak between peninsular Malaysia and Sumatra. This pattern is repeated in diverse habitat and higher taxa classes, most rigorously for marine shore fishes, supporting geohistorical hypotheses as the most general unifying explanations. Specific predictions based on area of overlap, area of accumulation, and area of refuge hypotheses suggest that present day eastern Indonesia, or Wallacea, should be the center of marine biodiversity. Processes suggested by these three hypotheses contribute to the diversity in this region and are also a likely explanation for the secondary center of diversity. Our study indicates, however, that there is a higher concentration of species per unit area in the Philippines than anywhere in Indonesia, including Wallacea. The Philippine center of diversity is consistent with hypotheses that this area experienced numerous vicariant and island integration events and these hypotheses warrant further testing. Special attention to marine conservation efforts in the Philippines is justified because of the identification of it as an epicenter of biodiversity and evolution.


Science | 2011

High Value and Long Life—Double Jeopardy for Tunas and Billfishes

Bruce B. Collette; Kent E. Carpenter; Beth A. Polidoro; M. J. Juan-Jordá; Andre M. Boustany; David J. Die; Cristiane T. Elfes; W. Fox; J. Graves; Lucy R. Harrison; R. McManus; C. V. Minte-Vera; R. Nelson; Victor R. Restrepo; J. Schratwieser; Chi-Lu Sun; A. Amorim; M. Brick Peres; C. Canales; G. Cardenas; S.-K. Chang; Wei-Chuan Chiang; N. de Oliveira Leite; Heather Harwell; Rosangela Lessa; Flávia Lucena Frédou; H. A. Oxenford; R. Serra; Kwang-Tsao Shao; Rashid Sumaila

The first standardized, global assessment of these fishes, using Red List criteria, reveals threatened species needing protection. There is growing concern that in spite of the healthy status of several epipelagic (living near the surface) fish stocks (1), some scombrid (tunas, bonitos, mackerels, and Spanish mackerels) and billfish (swordfish and marlins) species are heavily overfished and that there is a lack of resolve to protect against overexploitation driven by high prices (2–5). Many populations are exploited by multinational fisheries whose regulation, from a political perspective, is exceedingly difficult. Thus, assessment and management is complicated and sometimes ineffective (4). Regional Fisheries Management Organizations (RFMOs) were created to manage and conserve scombrids and billfishes because of their transnational distributions and widespread economic importance (6). However, species-specific catch data for many scombrids and billfishes are not collected or are aggregated with other species. Even for the larger tunas, for which relatively rich data exist, population assessments and data are complex (1) and are difficult to combine across RFMOs, which prompts a need for alternative means of assessment.


Journal of Marine Biology | 2011

Comparative Phylogeography of the Coral Triangle and Implications for Marine Management

Kent E. Carpenter; Paul H. Barber; Eric D. Crandall; Ma. Carmen A. Ablan-Lagman; Ambariyanto; Gusti Ngurah Mahardika; B. Mabel Manjaji-Matsumoto; Marie Antonette Juinio-Meñez; Mudjekeewis D. Santos; Craig J. Starger; Abdul Hamid A. Toha

Extreme concentration of marine biodiversity and exploitation of marine resources in the Coral Triangle pose challenges to biogeographers and resource managers. Comparative phylogeography provides a powerful tool to test biogeographic hypotheses evoked to explain species richness in the Coral Triangle. It can also be used to delineate management units for marine resources. After about a decade of phylogeographical studies, patterns for the Coral Triangle are emerging. Broad connectivity in some species support the notion that larvae have maintained gene flow among distant populations for long periods. Other phylogeographic patterns suggest vicariant events resulting from Pleistocene sea level fluctuations, which have, at least occasionally, resulted in speciation. Divergence dates ranging back to the Miocene suggest that changing land configurations may have precipitated an explosion of species diversification. A synthesis of the marine phylogeographic studies reveals repeated patterns that corroborate hypothesized biogeographic processes and suggest improved management schemes for marine resources.


Molecular Biology and Evolution | 2012

Expansion Dating: Calibrating Molecular Clocks in Marine Species from Expansions onto the Sunda Shelf Following the Last Glacial Maximum

Eric D. Crandall; Elizabeth J. Sbrocco; Timery S. DeBoer; Paul H. Barber; Kent E. Carpenter

The rate of change in DNA is an important parameter for understanding molecular evolution and hence for inferences drawn from studies of phylogeography and phylogenetics. Most rate calibrations for mitochondrial coding regions in marine species have been made from divergence dating for fossils and vicariant events older than 1-2 My and are typically 0.5-2% per lineage per million years. Recently, calibrations made with ancient DNA (aDNA) from younger dates have yielded faster rates, suggesting that estimates of the molecular rate of change depend on the time of calibration, decaying from the instantaneous mutation rate to the phylogenetic substitution rate. aDNA methods for recent calibrations are not available for most marine taxa so instead we use radiometric dates for sea-level rise onto the Sunda Shelf following the Last Glacial Maximum (starting ∼18,000 years ago), which led to massive population expansions for marine species. Instead of divergence dating, we use a two-epoch coalescent model of logistic population growth preceded by a constant population size to infer a time in mutational units for the beginning of these expansion events. This model compares favorably to simpler coalescent models of constant population size, and exponential or logistic growth, and is far more precise than estimates from the mismatch distribution. Mean rates estimated with this method for mitochondrial coding genes in three invertebrate species are elevated in comparison to older calibration points (2.3-6.6% per lineage per million years), lending additional support to the hypothesis of calibration time dependency for molecular rates.


PLOS ONE | 2014

Global priorities for marine biodiversity conservation.

Elizabeth R. Selig; Will R. Turner; Sebastian Troëng; Bryan P. Wallace; Benjamin S. Halpern; Kristin Kaschner; Ben Lascelles; Kent E. Carpenter; Russell A. Mittermeier

In recent decades, many marine populations have experienced major declines in abundance, but we still know little about where management interventions may help protect the highest levels of marine biodiversity. We used modeled spatial distribution data for nearly 12,500 species to quantify global patterns of species richness and two measures of endemism. By combining these data with spatial information on cumulative human impacts, we identified priority areas where marine biodiversity is most and least impacted by human activities, both within Exclusive Economic Zones (EEZs) and Areas Beyond National Jurisdiction (ABNJ). Our analyses highlighted places that are both accepted priorities for marine conservation like the Coral Triangle, as well as less well-known locations in the southwest Indian Ocean, western Pacific Ocean, Arctic and Antarctic Oceans, and within semi-enclosed seas like the Mediterranean and Baltic Seas. Within highly impacted priority areas, climate and fishing were the biggest stressors. Although new priorities may arise as we continue to improve marine species range datasets, results from this work are an essential first step in guiding limited resources to regions where investment could best sustain marine biodiversity.


Molecular Phylogenetics and Evolution | 2002

Molecular systematics of the Jacks (Perciformes: Carangidae) based on mitochondrial cytochrome b sequences using parsimony, likelihood, and Bayesian approaches.

David L. Reed; Kent E. Carpenter; Martin J. deGravelle

The Carangidae represent a diverse family of marine fishes that include both ecologically and economically important species. Currently, there are four recognized tribes within the family, but phylogenetic relationships among them based on morphology are not resolved. In addition, the tribe Carangini contains species with a variety of body forms and no study has tried to interpret the evolution of this diversity. We used DNA sequences from the mitochondrial cytochrome b gene to reconstruct the phylogenetic history of 50 species from each of the four tribes of Carangidae and four carangoid outgroup taxa. We found support for the monophyly of three tribes within the Carangidae (Carangini, Naucratini, and Trachinotini); however, monophyly of the fourth tribe (Scomberoidini) remains questionable. A sister group relationship between the Carangini and the Naucratini is well supported. This clade is apparently sister to the Trachinotini plus Scomberoidini but there is uncertain support for this relationship. Additionally, we examined the evolution of body form within the tribe Carangini and determined that each of the predominant clades has a distinct evolutionary trend in body form. We tested three methods of phylogenetic inference, parsimony, maximum-likelihood, and Bayesian inference. Whereas the three analyses produced largely congruent hypotheses, they differed in several important relationships. Maximum-likelihood and Bayesian methods produced hypotheses with higher support values for deep branches. The Bayesian analysis was computationally much faster and yet produced phylogenetic hypotheses that were very similar to those of the maximum-likelihood analysis.

Collaboration


Dive into the Kent E. Carpenter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul H. Barber

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge