Paul H. Barber
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul H. Barber.
Nature | 2000
Paul H. Barber; Stephen R. Palumbi; Mark V. Erdmann; M. Kasim Moosa
As most coral reef organisms with a pelagic larval phase are presumed to be readily dispersed between distant populations, sea-surface current patterns should be crucial for predicting ecological and genetic connections among threatened reef populations. Here we investigate this idea by examining variations in the genetic structuring of populations of the mantis shrimp Haptosquilla pulchella taken from 11 reef systems in Indonesia, in which a series of 36 protected areas are presumed to be connected by strong ocean currents. Our results reveal instead that there is a strong regional genetic differentiation that mirrors the separation of ocean basins during the Pleistocene low-sea-level stands, indicating that ecological connections are rare across distances as short as 300–400 km and that biogeographic history also influences contemporary connectivity between reef ecosystems.
Molecular Ecology | 2002
Paul H. Barber; Stephen R. Palumbi; Mark V. Erdmann; M. K. Moosa
To help stem the precipitous decline of coral reef ecosystems world‐wide, conservation efforts are focused on establishing interconnected reserve networks to protect threatened populations. Because many coral reef organisms have a planktonic or pelagic larval dispersal phase, it is critical to understand the patterns of ecological connectivity between reserve populations that result from larval dispersal. We used genetics to infer dispersal patterns among 24 Indo‐West Pacific populations of the mantis shrimp, Haptosquilla pulchella. Contrary to predictions of high dispersal facilitated by the strong currents of the Indonesian throughflow, mitochondrial DNA sequences from 393 individuals displayed striking patterns of regional genetic differentiation concordant with ocean basins isolated during periods of lowered sea level. Patterns of genetic structuring indicate that although dispersal within geographical regions with semicontiguous coastlines spanning thousands of kilometres may be common, ecologically meaningful connections can be rare among populations separated by as little as 300 km of open ocean. Strong genetic mosaics in a species with high dispersal potential highlight the utility of genetics for identifying regional patterns of genetic connectivity between marine populations and show that the assumption that ocean currents will provide ecological connectivity among marine populations must be empirically tested in the design of marine reserve networks.
Evolution | 2006
Paul H. Barber; Mark V. Erdmann; Stephen R. Palumbi
Abstract The Indonesian‐Australian Archipelago is the center of the worlds marine biodiversity. Although many biogeographers have suggested that this region is a “center of origin,” criticism of this theory has focused on the absence of processes promoting lineage diversification in the center. In this study we compare patterns of phylogeo‐graphic structure and gene flow in three codistributed, ecologically similar Indo‐West Pacific stomatopod (mantis shrimp) species. All three taxa show evidence for limited gene flow across the Maluku Sea with deep genetic breaks between populations from Papua and Northern Indonesia, suggesting that limited water transport across the Maluku Sea may limit larval dispersal and gene flow across this region. All three taxa also show moderate to strong genetic structure between populations from Northern and Southern Indonesia, indicating limited gene flow across the Flores and Java Seas. Despite the similarities in phylogeographic structure, results indicate varied ages of the genetic discontinuities, ranging from the middle Pleistocene to the Pliocene. Concordance of genetic structure across multiple taxa combined with temporal discordance suggests that regional genetic structures have arisen from the action of common physical processes operating over extended time periods. The presence in all three species of both intraspecific genetic structure as well as deeply divergent lineages that likely represent cryptic species suggests that these processes may promote lineage diversification within the Indonesian‐Australian Archipelago, providing a potential mechanism for the center of origin. Efforts to conserve biodiversity in the Coral Triangle should work to preserve both existing biodiversity as well as the processes creating the biodiversity.
Journal of Marine Biology | 2011
Kent E. Carpenter; Paul H. Barber; Eric D. Crandall; Ma. Carmen A. Ablan-Lagman; Ambariyanto; Gusti Ngurah Mahardika; B. Mabel Manjaji-Matsumoto; Marie Antonette Juinio-Meñez; Mudjekeewis D. Santos; Craig J. Starger; Abdul Hamid A. Toha
Extreme concentration of marine biodiversity and exploitation of marine resources in the Coral Triangle pose challenges to biogeographers and resource managers. Comparative phylogeography provides a powerful tool to test biogeographic hypotheses evoked to explain species richness in the Coral Triangle. It can also be used to delineate management units for marine resources. After about a decade of phylogeographical studies, patterns for the Coral Triangle are emerging. Broad connectivity in some species support the notion that larvae have maintained gene flow among distant populations for long periods. Other phylogeographic patterns suggest vicariant events resulting from Pleistocene sea level fluctuations, which have, at least occasionally, resulted in speciation. Divergence dates ranging back to the Miocene suggest that changing land configurations may have precipitated an explosion of species diversification. A synthesis of the marine phylogeographic studies reveals repeated patterns that corroborate hypothesized biogeographic processes and suggest improved management schemes for marine resources.
Molecular Ecology | 2007
Eric D. Crandall; Melissa A. Frey; Richard K. Grosberg; Paul H. Barber
Marine species with ranges that span the Indo‐Australian Archipelago (IAA) exhibit a range of phylogeographical patterns, most of which are interpreted in the context of vicariance between Indian and Pacific Ocean populations during Pliocene and Pleistocene low sea‐level stands. However, patterns often vary among ecologically similar taxa, sometimes even within genera. This study compares phylogeographical patterns in two species of highly dispersive neritid gastropod, Nerita albicilla and Nerita plicata, with nearly sympatric ranges that span the Indo‐Pacific. Mitochondrial COI sequences from > 1000 individuals from 97 sites reveal similar phylogenies in both species (two divergent clades differing by 3.2% and 2.3%, for N. albicilla and N. plicata, respectively). However, despite ecological similarity and congeneric status, the two species exhibit phylogeographical discordance. N. albicilla has maintained reciprocal monophyly of Indian and Pacific Ocean populations, while N. plicata is panmictic between oceans, but displays a genetic cline in the Central Pacific. Although this difference might be explained by qualitatively different demographic histories, parameter estimates from three coalescent models indicate that both species have high levels of gene flow between demes (2Nem > 75), and share a common history of population expansion that is likely associated with cyclical flooding of continental shelves and island lagoons following low sea‐level stands. Results indicate that ecologically similar, codistributed species may respond very differently to shared environmental processes, suggesting that relatively minor differences in traits such as pelagic larval duration or microhabitat association may profoundly impact phylogeographical structure.
Proceedings of the Royal Society of London B: Biological Sciences | 2006
Paul H. Barber; Sarah L Boyce
There is a push to fully document the biodiversity of the world within 25 years. However, the magnitude of this challenge, particularly in marine environments, is not well known. In this study, we apply DNA barcoding to explore the biodiversity of gonodactylid stomatopods (mantis shrimp) in both the Coral Triangle and the Red Sea. Comparison of sequences from 189 unknown stomatopod larvae to 327 known adults representing 67 taxa in the superfamily Gonodactyloidea revealed 22 distinct larval operational taxonomic units (OTUs). In the Western Pacific, 10 larval OTUs were members of the Gonodactylidae and Protosquillidae where success of positive identification was expected to be 96.5%. However, only five OTUs could be identified to species and at least three OTUs represent new species unknown in their adult form. In the Red Sea where the identification rate was expected to be 75% in the Gonodactylidae, none of four larval OTUs could be identified to species; at least two represent new species unknown in their adult forms. Results indicate that the biodiversity in this well-studied group in the Coral Triangle and Red Sea may be underestimated by a minimum of 50% to more than 150%, suggesting a much greater challenge in lesser-studied groups. Although the DNA barcoding methodology was effective, its overall success was limited due to the newly discovered taxonomic limitations of the reference sequence database, highlighting the importance of synergy between molecular geneticists and taxonomists in understanding and documenting our worlds biodiversity, both in marine and terrestrial environments.
Biology Letters | 2008
Catherine Vogler; John Benzie; Harilaos A. Lessios; Paul H. Barber; Gert Wörheide
In the face of ever-increasing threats to coral reef ecosystems, it is essential to understand the impact of natural predators in order to devise appropriate management strategies. Destructive population explosions of the crown-of-thorns starfish Acanthaster planci have devastated coral reefs throughout the Indo-Pacific for decades. But despite extensive research, the causes of outbreaks are still unclear. An important consideration in this research is that A. planci has been regarded as a single taxonomic entity. Using molecular data from its entire distribution, we find that A. planci is in fact a species complex. This discovery has important consequences for future coral reef research, and might prove critical for successful reef conservation management.
Molecular Ecology | 2008
Eric D. Crandall; Mary Jones; Martha Munoz; Bolanle Akinronbi; Mark V. Erdmann; Paul H. Barber
Repeated exposure and flooding of the Sunda and Sahul shelves during Pleistocene sea‐level fluctuations is thought to have contributed to the isolation and diversification of sea‐basin populations within the Coral Triangle. This hypothesis has been tested in numerous phylogeographical studies, recovering an assortment of genetic patterns that the authors have generally attributed to differences in larval dispersal capability or adult habitat specificity. This study compares phylogeographical patterns from mitochondrial COI sequences among two co‐distributed seastars that differ in their adult habitat and dispersal ability, and two seastar ectosymbionts that differ in their degree of host specificity. Of these, only the seastar Linckia laevigata displayed a classical pattern of Indian‐Pacific divergence, but with only moderate genetic structure (ΦCT = 0.067). In contrast, the seastar Protoreaster nodosus exhibited strong structure (ΦCT = 0.23) between Teluk Cenderawasih and the remainder of Indonesia, a pattern of regional structure that was echoed in L. laevigata (ΦCT = 0.03) as well as its obligate gastropod parasite Thyca crystallina (ΦCT = 0.04). The generalist commensal shrimp, Periclimenes soror showed little genetic structuring across the Coral Triangle. Despite species‐specific phylogeographical patterns, all four species showed departures from neutrality that are consistent with massive range expansions onto the continental shelves as the sea levels rose, and that date within the Pleistocene epoch. Our results suggest that habitat differences may affect the manner in which species responded to Pleistocene sea‐level fluctuations, shaping contemporary patterns of genetic structure and diversity.
Molecular Biology and Evolution | 2012
Eric D. Crandall; Elizabeth J. Sbrocco; Timery S. DeBoer; Paul H. Barber; Kent E. Carpenter
The rate of change in DNA is an important parameter for understanding molecular evolution and hence for inferences drawn from studies of phylogeography and phylogenetics. Most rate calibrations for mitochondrial coding regions in marine species have been made from divergence dating for fossils and vicariant events older than 1-2 My and are typically 0.5-2% per lineage per million years. Recently, calibrations made with ancient DNA (aDNA) from younger dates have yielded faster rates, suggesting that estimates of the molecular rate of change depend on the time of calibration, decaying from the instantaneous mutation rate to the phylogenetic substitution rate. aDNA methods for recent calibrations are not available for most marine taxa so instead we use radiometric dates for sea-level rise onto the Sunda Shelf following the Last Glacial Maximum (starting ∼18,000 years ago), which led to massive population expansions for marine species. Instead of divergence dating, we use a two-epoch coalescent model of logistic population growth preceded by a constant population size to infer a time in mutational units for the beginning of these expansion events. This model compares favorably to simpler coalescent models of constant population size, and exponential or logistic growth, and is far more precise than estimates from the mismatch distribution. Mean rates estimated with this method for mitochondrial coding genes in three invertebrate species are elevated in comparison to older calibration points (2.3-6.6% per lineage per million years), lending additional support to the hypothesis of calibration time dependency for molecular rates.
Molecular Ecology | 2011
Zachary W. Culumber; Heidi S. Fisher; Michael Tobler; M. Mateos; Paul H. Barber; Michael D. Sorenson; Gil G. Rosenthal
Natural hybrid zones provide opportunities to study a range of evolutionary phenomena from speciation to the genetic basis of fitness‐related traits. We show that widespread hybridization has occurred between two neo‐tropical stream fishes with partial reproductive isolation. Phylogenetic analyses of mitochondrial sequence data showed that the swordtail fish Xiphophorus birchmanni is monophyletic and that X. malinche is part of an independent monophyletic clade with other species. Using informative single nucleotide polymorphisms in one mitochondrial and three nuclear intron loci, we genotyped 776 specimens collected from twenty‐three sites along seven separate stream reaches. Hybrid zones occurred in replicated fashion in all stream reaches along a gradient from high to low elevation. Genotyping revealed substantial variation in parental and hybrid frequencies among localities. Tests of FIS and linkage disequilibrium (LD) revealed generally low FIS and LD except in five populations where both parental species and hybrids were found suggesting incomplete reproductive isolation. In these locations, heterozygote deficiency and LD were high, which suggests either selection against early generation hybrids or assortative mating. These data lay the foundation to study the adaptive basis of the replicated hybrid zone structure and for future integration of behaviour and genetics to determine the processes that lead to the population genetic patterns observed in these hybrid zones.