Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kentaro Futatsugi is active.

Publication


Featured researches published by Kentaro Futatsugi.


Journal of Medicinal Chemistry | 2011

Activation of the G-protein-coupled receptor 119: a conformation-based hypothesis for understanding agonist response.

Kim F. McClure; Etzer Darout; Cristiano R. W. Guimarães; Michael Paul Deninno; Vincent Mascitti; Michael John Munchhof; Ralph P. Robinson; Jeffrey T. Kohrt; Anthony R. Harris; Dianna E. Moore; Bryan Li; Lacey Samp; Bruce Allen Lefker; Kentaro Futatsugi; Daniel Kung; Paul D. Bonin; Peter Cornelius; Ruduan Wang; Eben Salter; Sam Hornby; Amit S. Kalgutkar; Yue Chen

The synthesis and properties of the bridged piperidine (oxaazabicyclo) compounds 8, 9, and 11 are described. A conformational analysis of these structures is compared with the representative GPR119 ligand 1. These results and the differences in agonist pharmacology are used to formulate a conformation-based hypothesis to understand activation of the GPR119 receptor. We also show for these structures that the agonist pharmacology in rat masks the important differences in human pharmacology.


ACS Medicinal Chemistry Letters | 2013

Identification of Tetrahydropyrido[4,3-d]pyrimidine Amides as a New Class of Orally Bioavailable TGR5 Agonists

David W. Piotrowski; Kentaro Futatsugi; Joseph Scott Warmus; Suvi T. M. Orr; Kevin Daniel Freeman-Cook; Allyn T. Londregan; Liuqing Wei; Sandra M. Jennings; Michael Herr; Steven B. Coffey; Wenhua Jiao; Gregory Storer; David Hepworth; Jian Wang; Sophie Y. Lavergne; Janice E. Chin; John R. Hadcock; Martin B. Brenner; Angela Wolford; Ann M. Janssen; Nicole S. Roush; Joanne Buxton; Terri Hinchey; Amit S. Kalgutkar; Raman Sharma; Declan Flynn

Takeda G-protein-coupled receptor 5 (TGR5) represents an exciting biological target for the potential treatment of diabetes and metabolic syndrome. A new class of high-throughput screening (HTS)-derived tetrahydropyrido[4,3-d]pyrimidine amide TGR5 agonists is disclosed. We describe our effort to identify an orally available agonist suitable for assessment of systemic TGR5 agonism. This effort resulted in identification of 16, which had acceptable potency and pharmacokinetic properties to allow for in vivo assessment in dog. A key aspect of this work was the calibration of human and dog in vitro assay systems that could be linked with data from a human ex vivo peripheral blood monocyte assay that expresses receptor at endogenous levels. Potency from the human in vitro assay was also found to correlate with data from an ex vivo human whole blood assay. This calibration exercise provided confidence that 16 could be used to drive plasma exposures sufficient to test the effects of systemic activation of TGR5.


Bioorganic & Medicinal Chemistry Letters | 2011

Design and evaluation of a 2-(2,3,6-trifluorophenyl)acetamide derivative as an agonist of the GPR119 receptor.

Vincent Mascitti; Benjamin D. Stevens; Chulho Choi; Kim F. McClure; Cristiano R. W. Guimarães; Kathleen A. Farley; Michael John Munchhof; Ralph P. Robinson; Kentaro Futatsugi; Sophie Y. Lavergne; Bruce Allen Lefker; Peter Cornelius; Paul D. Bonin; Amit S. Kalgutkar; Raman Sharma; Yue Chen

The design and synthesis of a GPR119 agonist bearing a 2-(2,3,6-trifluorophenyl)acetamide group is described. The design capitalized on the conformational restriction found in N-β-fluoroethylamide derivatives to help maintain good levels of potency while driving down both lipophilicity and oxidative metabolism in human liver microsomes. The chemical stability and bioactivation potential are discussed.


MedChemComm | 2013

Optimization of triazole-based TGR5 agonists towards orally available agents

Kentaro Futatsugi; Kevin B. Bahnck; Martin B. Brenner; Joanne Buxton; Janice E. Chin; Steven B. Coffey; Jeffrey S. Dubins; Declan Flynn; Denise Gautreau; Angel Guzman-Perez; John R. Hadcock; David Hepworth; Michael Herr; Terri Hinchey; Ann M. Janssen; Sandra M. Jennings; Wenhua Jiao; Sophie Y. Lavergne; Bryan Li; Mei Li; Michael John Munchhof; Suvi T. M. Orr; David W. Piotrowski; Nicole S. Roush; Matthew F. Sammons; Benjamin D. Stevens; Gregory Storer; Jian Wang; Joseph Scott Warmus; Liuqing Wei

Reported herein is a medicinal chemistry effort towards the identification of orally available TGR5 agonist 12, which served as a dog tool compound for studies to increase confidence in this mechanism. With the challenge of striking the balance of TGR5 potency and desired clearance profile, the screening strategy as well as medicinal chemistry strategy are discussed in this article.


Scientific Reports | 2015

Discovery and characterization of novel inhibitors of the sodium-coupled citrate transporter (NaCT or SLC13A5)

Kim Huard; Janice A. Brown; Jessica E. C. Jones; Shawn Cabral; Kentaro Futatsugi; Matthew Gorgoglione; Adhiraj Lanba; Nicholas B. Vera; Yimin Zhu; Qingyun Yan; Yingjiang Zhou; Cecile Vernochet; Keith Riccardi; Angela Wolford; David Pirman; Mark Niosi; Gary E. Aspnes; Michael Herr; Nathan E. Genung; Thomas V. Magee; Daniel P. Uccello; Paula M. Loria; Li Di; James R. Gosset; David Hepworth; Timothy P. Rolph; Jeffrey A. Pfefferkorn; Derek M. Erion

Citrate is a key regulatory metabolic intermediate as it facilitates the integration of the glycolysis and lipid synthesis pathways. Inhibition of hepatic extracellular citrate uptake, by blocking the sodium-coupled citrate transporter (NaCT or SLC13A5), has been suggested as a potential therapeutic approach to treat metabolic disorders. NaCT transports citrate from the blood into the cell coupled to the transport of sodium ions. The studies herein report the identification and characterization of a novel small dicarboxylate molecule (compound 2) capable of selectively and potently inhibiting citrate transport through NaCT, both in vitro and in vivo. Binding and transport experiments indicate that 2 specifically binds NaCT in a competitive and stereosensitive manner, and is recognized as a substrate for transport by NaCT. The favorable pharmacokinetic properties of 2 permitted in vivo experiments to evaluate the effect of inhibiting hepatic citrate uptake on metabolic endpoints.


Journal of Medicinal Chemistry | 2015

Discovery and Optimization of Imidazopyridine-Based Inhibitors of Diacylglycerol Acyltransferase 2 (DGAT2)

Kentaro Futatsugi; Daniel W. Kung; Suvi T. M. Orr; Shawn Cabral; David Hepworth; Gary E. Aspnes; Scott Bader; Jianwei Bian; Markus Boehm; Philip A. Carpino; Steven B. Coffey; Matthew S. Dowling; Michael Herr; Wenhua Jiao; Sophie Y. Lavergne; Qifang Li; Ronald W. Clark; Derek M. Erion; Kou Kou; Kyuha Lee; Brandon Pabst; Sylvie Perez; Julie Purkal; Csilla C. Jorgensen; Theunis C. Goosen; James R. Gosset; Mark Niosi; John C. Pettersen; Jeffrey A. Pfefferkorn; Kay Ahn

The medicinal chemistry and preclinical biology of imidazopyridine-based inhibitors of diacylglycerol acyltransferase 2 (DGAT2) is described. A screening hit 1 with low lipophilic efficiency (LipE) was optimized through two key structural modifications: (1) identification of the pyrrolidine amide group for a significant LipE improvement, and (2) insertion of a sp(3)-hybridized carbon center in the core of the molecule for simultaneous improvement of N-glucuronidation metabolic liability and off-target pharmacology. The preclinical candidate 9 (PF-06424439) demonstrated excellent ADMET properties and decreased circulating and hepatic lipids when orally administered to dyslipidemic rodent models.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of 5-phenoxy-1,3-dimethyl-1H-pyrazole-4-carboxamides as potent agonists of TGR5 via sequential combinatorial libraries.

Allyn T. Londregan; David W. Piotrowski; Kentaro Futatsugi; Joseph Scott Warmus; Markus Boehm; Philip A. Carpino; Janice E. Chin; Ann M. Janssen; Nicole S. Roush; Joanne Buxton; Terri Hinchey

Optimization of a high-throughput screening hit led to the discovery of a new series of 5-phenoxy-1,3-dimethyl-1H-pyrazole-4-carboxamides as highly potent agonists of TGR5. This novel chemotype was rapidly developed through iterative combinatorial library synthesis. It was determined that in vitro agonist potency correlated with functional activity data from human peripheral blood monocytes.


Bioorganic & Medicinal Chemistry Letters | 2013

From partial to full agonism: Identification of a novel 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole as a full agonist of the human GPR119 receptor

Kentaro Futatsugi; Vincent Mascitti; Cristiano R. W. Guimarães; Nao Morishita; Cuiman Cai; Michael Paul Deninno; Hua Gao; Michael Hamilton; Richard F. Hank; Anthony R. Harris; Daniel W. Kung; Sophie Y. Lavergne; Bruce Allen Lefker; Michael G. Lopaze; Kim F. McClure; Michael John Munchhof; Cathy Préville; Ralph P. Robinson; Stephen W. Wright; Paul D. Bonin; Peter Cornelius; Yue Chen; Amit S. Kalgutkar

A novel GPR119 agonist based on the 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole scaffold was designed through lead optimization starting from pyrazole-based GPR119 agonist 1. The design is centered on the conformational restriction of the core scaffold, while minimizing the change in spatial relationships of two key pharmacophoric elements (piperidine-carbamate and aryl sulfone).


Bioorganic & Medicinal Chemistry Letters | 2013

Design and synthesis of aryl sulfonamide-based nonsteroidal mineralocorticoid receptor antagonists.

Kentaro Futatsugi; David W. Piotrowski; Agustin Casimiro-Garcia; Shaughn Robinson; Matthew F. Sammons; Paula M. Loria; Mary Ellen Banker; Donna N. Petersen; Natalia J. Schmidt

Hit-to-lead medicinal chemistry efforts are described starting from a screening hit 1, leading to a new class of aryl sulfonamide-based MR antagonist, exemplified by 17, that possesses favourable MR binding affinity, selectivity profile against closely related NHRs, physicochemical properties and metabolic stability.


Journal of Medicinal Chemistry | 2016

Optimization of a Dicarboxylic Series for in Vivo Inhibition of Citrate Transport by the Solute Carrier 13 (SLC13) Family

Kim Huard; James R. Gosset; Justin Ian Montgomery; Adam M. Gilbert; Matthew Merrill Hayward; Thomas V. Magee; Shawn Cabral; Daniel P. Uccello; Kevin B. Bahnck; Janice A. Brown; Julie Purkal; Matthew Gorgoglione; Adhiraj Lanba; Kentaro Futatsugi; Michael Herr; Nathan E. Genung; Gary E. Aspnes; Jana Polivkova; Carmen N. Garcia-Irizarry; Qifang Li; Daniel Canterbury; Mark Niosi; Nicholas B. Vera; Zhenhong Li; Bhagyashree Khunte; Jaclyn Siderewicz; Timothy P. Rolph; Derek M. Erion

Inhibition of the sodium-coupled citrate transporter (NaCT or SLC13A5) has been proposed as a new therapeutic approach for prevention and treatment of metabolic diseases. In a previous report, we discovered dicarboxylate 1a (PF-06649298) which inhibits the transport of citrate in in vitro and in vivo settings via a specific interaction with NaCT. Herein, we report the optimization of this series leading to 4a (PF-06761281), a more potent inhibitor with suitable in vivo pharmacokinetic profile for assessment of in vivo pharmacodynamics. Compound 4a was used to demonstrate dose-dependent inhibition of radioactive [(14)C]citrate uptake in liver and kidney in vivo, resulting in modest reductions in plasma glucose concentrations.

Collaboration


Dive into the Kentaro Futatsugi's collaboration.

Researchain Logo
Decentralizing Knowledge