Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kim F. McClure is active.

Publication


Featured researches published by Kim F. McClure.


Drug Metabolism and Disposition | 2007

Genotoxicity of 2-(3-Chlorobenzyloxy)-6-(piperazinyl)pyrazine, a Novel 5-Hydroxytryptamine2c Receptor Agonist for the Treatment of Obesity: Role of Metabolic Activation

Amit S. Kalgutkar; Deepak Dalvie; Evan Smith; Stephanie L. Coffing; Jennifer R. Cheung; Chandra Vage; Mary E. Lame; Phoebe Chiang; Kim F. McClure; Tristan S. Maurer; Richard V. Coelho; Victor F. Soliman; Klaas Schildknegt

2-(3-Chlorobenzyloxy)-6-(piperazin-1-yl)pyrazine (3) is a potent and selective 5-HT2C agonist that exhibits dose-dependent inhibition of food intake and reduction in body weight in rats, making it an attractive candidate for treatment of obesity. However, examination of the genotoxicity potential of 3 in the Salmonella Ames assay using tester strains TA98, TA100, TA1535, and TA1537 revealed a metabolism (rat S9/NADPH)- and dose-dependent increase of reverse mutations in strains TA100 and TA1537. The increase in reverse mutations was attenuated upon coincubation with methoxylamine and glutathione. The irreversible and concentration-dependent incorporation of radioactivity in calf thymus DNA after incubations with [14C]3 in the presence of rat S9/NADPH suggested that 3 was bioactivated to a reactive intermediate that covalently bound DNA. In vitro metabolism studies on 3 with rat S9/NADPH in the presence of methoxylamine and cyanide led to the detection of amine and cyano conjugates of 3. The mass spectrum of the amine conjugate was consistent with condensation of amine with an aldehyde metabolite derived from hydroxylation of the secondary piperazine nitrogen-α-carbon bond. The mass spectrum of the cyano conjugate suggested a bioactivation pathway involving N-hydroxylation of the secondary piperazine nitrogen followed by two-electron oxidation to generate an electrophilic nitrone, which reacted with cyanide. The 3-chlorobenzyl motif in 3 was also bioactivated via initial aromatic ring hydroxylation followed by elimination to a quinone-methide species that reacted with glutathione or with the secondary piperazine ring nitrogen in 3 and its monohydroxylated metabolite(s). The metabolism studies described herein provide a mechanistic basis for the mutagenicity of 3.


Journal of Medicinal Chemistry | 2011

Activation of the G-protein-coupled receptor 119: a conformation-based hypothesis for understanding agonist response.

Kim F. McClure; Etzer Darout; Cristiano R. W. Guimarães; Michael Paul Deninno; Vincent Mascitti; Michael John Munchhof; Ralph P. Robinson; Jeffrey T. Kohrt; Anthony R. Harris; Dianna E. Moore; Bryan Li; Lacey Samp; Bruce Allen Lefker; Kentaro Futatsugi; Daniel Kung; Paul D. Bonin; Peter Cornelius; Ruduan Wang; Eben Salter; Sam Hornby; Amit S. Kalgutkar; Yue Chen

The synthesis and properties of the bridged piperidine (oxaazabicyclo) compounds 8, 9, and 11 are described. A conformational analysis of these structures is compared with the representative GPR119 ligand 1. These results and the differences in agonist pharmacology are used to formulate a conformation-based hypothesis to understand activation of the GPR119 receptor. We also show for these structures that the agonist pharmacology in rat masks the important differences in human pharmacology.


ACS Medicinal Chemistry Letters | 2014

Discovery of PF-5190457, a Potent, Selective, and Orally Bioavailable Ghrelin Receptor Inverse Agonist Clinical Candidate

Samit Kumar Bhattacharya; Kim M. Andrews; Ramsay E. Beveridge; Kimberly O'keefe Cameron; Chiliu Chen; Matthew Dunn; Dilinie P. Fernando; Hua Gao; David Hepworth; V. Margaret Jackson; Vishal Khot; Jimmy Kong; Rachel Kosa; Kimberly Lapham; Paula M. Loria; Allyn T. Londregan; Kim F. McClure; Suvi T. M. Orr; Jigna Patel; Colin R. Rose; James Saenz; Ingrid A. Stock; Gregory Storer; Maria A. Vanvolkenburg; Derek Vrieze; Guoqiang Wang; Jun Xiao; Yingxin Zhang

The identification of potent, highly selective orally bioavailable ghrelin receptor inverse agonists from a spiro-azetidino-piperidine series is described. Examples from this series have promising in vivo pharmacokinetics and increase glucose-stimulated insulin secretion in human whole and dispersed islets. A physicochemistry-based strategy to increase lipophilic efficiency for ghrelin receptor potency and retain low clearance and satisfactory permeability while reducing off-target pharmacology led to the discovery of 16h. Compound 16h has a superior balance of ghrelin receptor pharmacology and off-target selectivity. On the basis of its promising pharmacological and safety profile, 16h was advanced to human clinical trials.


Bioorganic & Medicinal Chemistry Letters | 2012

Identification of spirocyclic piperidine-azetidine inverse agonists of the ghrelin receptor.

Daniel W. Kung; Steven B. Coffey; Ryan Jones; Shawn Cabral; Wenhua Jiao; Michael Fichtner; Philip A. Carpino; Colin R. Rose; Richard F. Hank; Michael G. Lopaze; Roger Swartz; Hou Tommy Chen; Zachary S. Hendsch; Bruce A. Posner; Christopher F. Wielis; Brian Manning; Jeffrey S. Dubins; Ingrid A. Stock; Sam Varma; Mary Campbell; Demetria Debartola; Rachel Kosa-Maines; Stefanus J. Steyn; Kim F. McClure

The discovery of spirocyclic piperidine-azetidine inverse agonists of the ghrelin receptor is described. The characterization and redressing of the issues associated with these compounds is detailed. An efficient three-step synthesis and a binding assay were relied upon as the primary means of rapidly improving potency and ADMET properties for this class of inverse agonist compounds. Compound 10 n bearing distributed polarity in the form of an imidazo-thiazole acetamide and a phenyl triazole is a unit lower in logP and has significantly improved binding affinity compared to the hit molecule 10a, providing support for further optimization of this series of compounds.


Bioorganic & Medicinal Chemistry Letters | 2011

Design and evaluation of a 2-(2,3,6-trifluorophenyl)acetamide derivative as an agonist of the GPR119 receptor.

Vincent Mascitti; Benjamin D. Stevens; Chulho Choi; Kim F. McClure; Cristiano R. W. Guimarães; Kathleen A. Farley; Michael John Munchhof; Ralph P. Robinson; Kentaro Futatsugi; Sophie Y. Lavergne; Bruce Allen Lefker; Peter Cornelius; Paul D. Bonin; Amit S. Kalgutkar; Raman Sharma; Yue Chen

The design and synthesis of a GPR119 agonist bearing a 2-(2,3,6-trifluorophenyl)acetamide group is described. The design capitalized on the conformational restriction found in N-β-fluoroethylamide derivatives to help maintain good levels of potency while driving down both lipophilicity and oxidative metabolism in human liver microsomes. The chemical stability and bioactivation potential are discussed.


Bioorganic & Medicinal Chemistry Letters | 2013

Identification of potent, selective, CNS-targeted inverse agonists of the ghrelin receptor

Kim F. McClure; Margaret Jackson; Kimberly O'keefe Cameron; Daniel W. Kung; David Austen Perry; Suvi T. M. Orr; Yingxin Zhang; Jeffrey T. Kohrt; Meihua Tu; Hua Gao; Dilinie P. Fernando; Ryan Jones; Noe Erasga; Guoqiang Wang; Jana Polivkova; Wenhua Jiao; Roger Swartz; Hirokazu Ueno; Samit Kumar Bhattacharya; Ingrid A. Stock; Sam Varma; Victoria Bagdasarian; Sylvie Perez; Dawn Kelly-Sullivan; Ruduan Wang; Jimmy Kong; Peter Cornelius; Laura Michael; Eunsun Lee; Ann M. Janssen

The optimization for selectivity and central receptor occupancy for a series of spirocyclic azetidine-piperidine inverse agonists of the ghrelin receptor is described. Decreased mAChR muscarinic M2 binding was achieved by use of a chiral indane in place of a substituted benzylic group. Compounds with desirable balance of human in vitro clearance and ex vivo central receptor occupancy were discovered by incorporation of heterocycles. Specifically, heteroaryl rings with nitrogen(s) vicinal to the indane linkage provided the most attractive overall properties.


Chemical Research in Toxicology | 2011

Oxidative metabolism of a quinoxaline derivative by xanthine oxidase in rodent plasma.

Raman Sharma; Heather Eng; Gregory S. Walker; Gabriela Barreiro; Antonia F. Stepan; Kim F. McClure; Angela Wolford; Paul D. Bonin; Peter Cornelius; Amit S. Kalgutkar

As part of efforts directed at the G protein-coupled receptor 119 agonist program for type 2 diabetes, a series of cyanopyridine derivatives exemplified by isopropyl-4-(3-cyano-5-(quinoxalin-6-yl)pyridine-2-yl)piperazine-1-carboxylate (1) were identified as novel chemotypes worthy of further hit-to-lead optimization. Compound 1, however, was found to be unstable in plasma (37 °C, pH 7.4) from rat (T(1/2) = 16 min), mouse (T(1/2) = 61 min), and guinea pig (T(1/2) = 4 min). Lowering the temperature of plasma incubations (4-25 °C) attenuated the degradation of 1, implicating the involvement of an enzyme-mediated process. Failure to detect any appreciable amount of 1 in plasma samples from protein binding and pharmacokinetic studies in rats was consistent with its labile nature in plasma. Instability noted in rodent plasma was not observed in plasma from dogs, monkeys, and humans (T(1/2) > 370 min at 37 °C, pH 7.4). Metabolite identification studies in rodent plasma revealed the formation of a single metabolite (M1), which was 16 Da higher than the molecular weight of 1 (compound 1, MH(+) = 403; M1, MH(+) = 419). Pretreatment of rat plasma with allopurinol, but not raloxifene, abolished the conversion of 1 to M1, suggesting that xanthine oxidase (XO) was responsible for the oxidative instability. Consistent with the known catalytic mechanism of XO, the source of oxygen incorporated in M1 was derived from water rather than molecular oxygen. The formation of M1 was also demonstrated in incubations of 1 with purified bovine XO. The structure of M1 was determined by NMR analysis to be isopropyl-4-(3-cyano-5-(3-oxo-3,4-dihydroquinoxalin-6-yl)pyridine-2-yl)piperazine-1-carboxylate. The regiochemistry of quinoxaline ring oxidation in 1 was consistent with ab initio calculations and molecular docking studies using a published crystal structure of bovine XO. A close-in analogue of 1, which lacked the quinoxaline motif (e.g., 5-(4-cyano-3-methylphenyl)-2-(4-(3-isopropyl-1,2,4-oxadiazol-5-yl)piperidin-1-yl)nicotinitrile (2)) was stable in rat plasma and possessed substantially improved GPR119 agonist properties. To the best of our knowledge, our studies constitute the first report on the involvement of rodent XO in oxidative drug metabolism in plasma.


Bioorganic & Medicinal Chemistry Letters | 2013

From partial to full agonism: Identification of a novel 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole as a full agonist of the human GPR119 receptor

Kentaro Futatsugi; Vincent Mascitti; Cristiano R. W. Guimarães; Nao Morishita; Cuiman Cai; Michael Paul Deninno; Hua Gao; Michael Hamilton; Richard F. Hank; Anthony R. Harris; Daniel W. Kung; Sophie Y. Lavergne; Bruce Allen Lefker; Michael G. Lopaze; Kim F. McClure; Michael John Munchhof; Cathy Préville; Ralph P. Robinson; Stephen W. Wright; Paul D. Bonin; Peter Cornelius; Yue Chen; Amit S. Kalgutkar

A novel GPR119 agonist based on the 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole scaffold was designed through lead optimization starting from pyrazole-based GPR119 agonist 1. The design is centered on the conformational restriction of the core scaffold, while minimizing the change in spatial relationships of two key pharmacophoric elements (piperidine-carbamate and aryl sulfone).


Chemistry & Biology | 2014

Design and Synthesis of Truncated EGF-A Peptides that Restore LDL-R Recycling in the Presence of PCSK9 In Vitro

Christina I. Schroeder; Joakim E. Swedberg; Jane M. Withka; Muharrem Akcan; Daniel Clayton; Norelle L. Daly; Olivier Cheneval; Kris A. Borzilleri; Matt Griffor; Ingrid A. Stock; Barbara Colless; Phillip Walsh; Phillip Sunderland; Allan R. Reyes; Robert Dullea; Mark Ammirati; Shenping Liu; Kim F. McClure; Meihua Tu; Samit Kumar Bhattacharya; Spiros Liras; David A. Price; David J. Craik

Disrupting the binding interaction between proprotein convertase (PCSK9) and the epidermal growth factor-like domain A (EGF-A domain) in the low-density lipoprotein receptor (LDL-R) is a promising strategy to promote LDL-R recycling and thereby lower circulating cholesterol levels. In this study, truncated 26 amino acid EGF-A analogs were designed and synthesized, and their structures were analyzed in solution and in complex with PCSK9. The most potent peptide had an increased binding affinity for PCSK9 (KD = 0.6 μM) compared with wild-type EGF-A (KD = 1.2 μM), and the ability to increase LDL-R recycling in the presence of PCSK9 in a cell-based assay.


Bioorganic & Medicinal Chemistry Letters | 2010

Continued exploration of the triazolopyridine scaffold as a platform for p38 MAP kinase inhibition

Kevin D. Jerome; Paul V. Rucker; Li Xing; Huey Shieh; John E. Baldus; Shaun R. Selness; Michael A. Letavic; John Frederick Braganza; Kim F. McClure

The structure based drug design, synthesis and structure-activity relationship of a series of C6 sulfur linked triazolopyridine based p38 inhibitors are described. The metabolic deficiencies of this series were overcome through changes in the C6 linker from sulfur to methylene, which was predicted by molecular modeling to be bioisosteric. X-ray of the ethylene linked compound 61 confirmed the predicted binding orientation of the scaffold in the p38 enzyme.

Collaboration


Dive into the Kim F. McClure's collaboration.

Researchain Logo
Decentralizing Knowledge