Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kentaro Hosokawa is active.

Publication


Featured researches published by Kentaro Hosokawa.


Nature Medicine | 2006

Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells

Keisuke Ito; Atsushi Hirao; Fumio Arai; Keiyo Takubo; Sahoko Matsuoka; Kana Miyamoto; Masako Ohmura; Kazuhito Naka; Kentaro Hosokawa; Yasuo Ikeda; Toshio Suda

Hematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood production for their lifetime. Appropriate control of HSC self-renewal is crucial for the maintenance of hematopoietic homeostasis. Here we show that activation of p38 MAPK in response to increasing levels of reactive oxygen species (ROS) limits the lifespan of HSCs in vivo. In Atm−/− mice, elevation of ROS levels induces HSC-specific phosphorylation of p38 MAPK accompanied by a defect in the maintenance of HSC quiescence. Inhibition of p38 MAPK rescued ROS-induced defects in HSC repopulating capacity and in the maintenance of HSC quiescence, indicating that the ROS–p38 MAPK pathway contributes to exhaustion of the stem cell population. Furthermore, prolonged treatment with an antioxidant or an inhibitor of p38 MAPK extended the lifespan of HSCs from wild-type mice in serial transplantation experiments. These data show that inactivation of p38 MAPK protects HSCs against loss of self-renewal capacity. Our characterization of molecular mechanisms that limit HSC lifespan may lead to beneficial therapies for human disease.


Nature | 2004

Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells

Keisuke Ito; Atsushi Hirao; Fumio Arai; Sahoko Matsuoka; Keiyo Takubo; Isao Hamaguchi; Kana Nomiyama; Kentaro Hosokawa; Kazuhiro Sakurada; Naomi Nakagata; Yasuo Ikeda; Tak W. Mak; Toshio Suda

The ‘ataxia telangiectasia mutated’ (Atm) gene maintains genomic stability by activating a key cell-cycle checkpoint in response to DNA damage, telomeric instability or oxidative stress. Mutational inactivation of the gene causes an autosomal recessive disorder, ataxia–telangiectasia, characterized by immunodeficiency, progressive cerebellar ataxia, oculocutaneous telangiectasia, defective spermatogenesis, premature ageing and a high incidence of lymphoma. Here we show that ATM has an essential function in the reconstitutive capacity of haematopoietic stem cells (HSCs) but is not as important for the proliferation or differentiation of progenitors, in a telomere-independent manner. Atm-/- mice older than 24 weeks showed progressive bone marrow failure resulting from a defect in HSC function that was associated with elevated reactive oxygen species. Treatment with anti-oxidative agents restored the reconstitutive capacity of Atm-/- HSCs, resulting in the prevention of bone marrow failure. Activation of the p16INK4a-retinoblastoma (Rb) gene product pathway in response to elevated reactive oxygen species led to the failure of Atm-/- HSCs. These results show that the self-renewal capacity of HSCs depends on ATM-mediated inhibition of oxidative stress.


Cell Stem Cell | 2007

Foxo3a Is Essential for Maintenance of the Hematopoietic Stem Cell Pool

Kana Miyamoto; Kiyomi Y. Araki; Kazuhito Naka; Fumio Arai; Keiyo Takubo; Satoshi Yamazaki; Sahoko Matsuoka; Takeshi Miyamoto; Keisuke Ito; Masako Ohmura; Chen Chen; Kentaro Hosokawa; Hiromitsu Nakauchi; Keiko Nakayama; Keiichi I. Nakayama; Mine Harada; Noboru Motoyama; Toshio Suda; Atsushi Hirao

Hematopoietic stem cells (HSCs) are maintained in an undifferentiated quiescent state within a bone marrow niche. Here we show that Foxo3a, a forkhead transcription factor that acts downstream of the PTEN/PI3K/Akt pathway, is critical for HSC self-renewal. We generated gene-targeted Foxo3a(-/-) mice and showed that, although the proliferation and differentiation of Foxo3a(-/-) hematopoietic progenitors were normal, the number of colony-forming cells present in long-term cocultures of Foxo3a(-/-) bone marrow cells and stromal cells was reduced. The ability of Foxo3a(-/-) HSCs to support long-term reconstitution of hematopoiesis in a competitive transplantation assay was also impaired. Foxo3a(-/-) HSCs also showed increased phosphorylation of p38MAPK, an elevation of ROS, defective maintenance of quiescence, and heightened sensitivity to cell-cycle-specific myelotoxic injury. Finally, HSC frequencies were significantly decreased in aged Foxo3a(-/-) mice compared to the littermate controls. Our results demonstrate that Foxo3a plays a pivotal role in maintaining the HSC pool.


Cell Stem Cell | 2007

Thrombopoietin/MPL Signaling Regulates Hematopoietic Stem Cell Quiescence and Interaction with the Osteoblastic Niche

Hiroki Yoshihara; Fumio Arai; Kentaro Hosokawa; Tetsuya Hagiwara; Keiyo Takubo; Yuka Nakamura; Yumiko Gomei; Hiroko Iwasaki; Sahoko Matsuoka; Kana Miyamoto; Hiroshi Miyazaki; Takao Takahashi; Toshio Suda

Maintenance of hematopoietic stem cells (HSCs) depends on interaction with their niche. Here we show that the long-term (LT)-HSCs expressing the thrombopoietin (THPO) receptor, MPL, are a quiescent population in adult bone marrow (BM) and are closely associated with THPO-producing osteoblastic cells. THPO/MPL signaling upregulated beta1-integrin and cyclin-dependent kinase inhibitors in HSCs. Furthermore, inhibition and stimulation of THPO/MPL pathway by treatments with anti-MPL neutralizing antibody, AMM2, and with THPO showed reciprocal regulation of quiescence of LT-HSC. AMM2 treatment reduced the number of quiescent LT-HSCs and allowed exogenous HSC engraftment without irradiation. By contrast, exogenous THPO transiently increased quiescent HSC population and subsequently induced HSC proliferation in vivo. Altogether, these observations suggest that THPO/MPL signaling plays a critical role of LT-HSC regulation in the osteoblastic niche.


Cell Stem Cell | 2011

p57(Kip2) and p27(Kip1) cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70.

Peng Zou; Hiroki Yoshihara; Kentaro Hosokawa; Ikue Tai; Kaori Shinmyozu; Fujiko Tsukahara; Yoshiro Maru; Keiko Nakayama; Keiichi I. Nakayama; Toshio Suda

Cell cycle regulators play critical roles in the balance between hematopoietic stem cell (HSC) dormancy and proliferation. In this study, we report that cell cycle entry proceeded normally in HSCs null for cyclin-dependent kinase (CDK) inhibitor p57 due to compensatory upregulation of p27. HSCs null for both p57 and p27, however, were more proliferative and had reduced capacity to engraft in transplantation. We found that heat shock cognate protein 70 (Hsc70) interacts with both p57 and p27 and that the subcellular localization of Hsc70 was critical to maintain HSC cell cycle kinetics. Combined deficiency of p57 and p27 in HSCs resulted in nuclear import of an Hsc70/cyclin D1 complex, concomitant with Rb phosphorylation, and elicited severe defects in maintaining HSC quiescence. Taken together, these data suggest that regulation of cytoplasmic localization of Hsc70/cyclin D1 complex by p57 and p27 is a key intracellular mechanism in controlling HSC dormancy.


Blood | 2010

Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells

Yuka Nakamura; Fumio Arai; Hiroko Iwasaki; Kentaro Hosokawa; Isao Kobayashi; Yumiko Gomei; Yoshiko Matsumoto; Hiroki Yoshihara; Toshio Suda

The endosteal niche is critical for the maintenance of hematopoietic stem cells (HSCs). However, it consists of a heterogeneous population in terms of differentiation stage and function. In this study, we characterized endosteal cell populations and examined their ability to maintain HSCs. Bone marrow endosteal cells were subdivided into immature mesenchymal cell-enriched ALCAM(-)Sca-1(+) cells, osteoblast-enriched ALCAM(+)Sca-1(-), and ALCAM(-)Sca-1(-) cells. We found that all 3 fractions maintained long-term reconstitution (LTR) activity of HSCs in an in vitro culture. In particular, ALCAM(+)Sca-1(-) cells significantly enhanced the LTR activity of HSCs by the up-regulation of homing- and cell adhesion-related genes in HSCs. Microarray analysis showed that ALCAM(-)Sca-1(+) fraction highly expressed cytokine-related genes, whereas the ALCAM(+)Sca-1(-) fraction expressed multiple cell adhesion molecules, such as cadherins, at a greater level than the other fractions, indicating that the interaction between HSCs and osteoblasts via cell adhesion molecules enhanced the LTR activity of HSCs. Furthermore, we found an osteoblastic marker(low/-) subpopulation in ALCAM(+)Sca-1(-) fraction that expressed cytokines, such as Angpt1 and Thpo, and stem cell marker genes. Altogether, these data suggest that multiple subsets of osteoblasts and mesenchymal progenitor cells constitute the endosteal niche and regulate HSCs in adult bone marrow.


Blood | 2010

Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells

Kentaro Hosokawa; Fumio Arai; Hiroki Yoshihara; Hiroko Iwasaki; Yuka Nakamura; Yumiko Gomei; Toshio Suda

During postnatal life, the bone marrow (BM) supports both self-renewal and differentiation of hematopoietic stem cells (HSCs) in specialized microenvironments termed stem cell niches. Cell-cell and cell-extracellular matrix interactions between HSCs and their niches are critical for the maintenance of HSC properties. Here, we analyzed the function of N-cadherin in the regulation of the proliferation and long-term repopulation activity of hematopoietic stem/progenitor cells (HSPCs) by the transduction of N-cadherin shRNA. Inhibition of N-cadherin expression accelerated cell division in vitro and reduced the lodgment of donor HSPCs to the endosteal surface, resulting in a significant reduction in long-term engraftment. Cotransduction of N-cadherin shRNA and a mutant N-cadherin that introduced the silent mutations to shRNA target sequences rescued the accelerated cell division and reconstitution phenotypes. In addition, the requirement of N-cadherin for HSPC engraftment appears to be niche specific, as shN-cad-transduced lineage(-)Sca-1(+)c-Kit(+) cells successfully engrafted in spleen, which lacks an osteoblastic niche. These findings suggest that N-cad-mediated cell adhesion is functionally required for the establishment of hematopoiesis in the BM niche after BM transplantation.


Journal of Immunology | 2007

Regulation of Reactive Oxygen Species by Atm Is Essential for Proper Response to DNA Double-Strand Breaks in Lymphocytes

Keisuke Ito; Keiyo Takubo; Fumio Arai; Hitoshi Satoh; Sahoko Matsuoka; Masako Ohmura; Kazuhito Naka; Masaki Azuma; Kana Miyamoto; Kentaro Hosokawa; Yasuo Ikeda; Tak W. Mak; Toshio Suda; Atsushi Hirao

The ataxia telangiectasia-mutated (ATM) gene plays a pivotal role in the maintenance of genomic stability. Although it has been recently shown that antioxidative agents inhibited lymphomagenesis in Atm−/− mice, the mechanisms remain unclear. In this study, we intensively investigated the roles of reactive oxygen species (ROS) in phenotypes of Atm−/− mice. Reduction of ROS by the antioxidant N-acetyl-l-cysteine (NAC) prevented the emergence of senescent phenotypes in Atm−/− mouse embryonic fibroblasts, hypersensitivity to total body irradiation, and thymic lymphomagenesis in Atm−/− mice. To understand the mechanisms for prevention of lymphomagenesis, we analyzed development of pretumor lymphocytes in Atm−/− mice. Impairment of Ig class switch recombination seen in Atm−/− mice was mitigated by NAC, indicating that ROS elevation leads to abnormal response to programmed double-strand breaks in vivo. Significantly, in vivo administration of NAC to Atm−/− mice restored normal T cell development and inhibited aberrant V(D)J recombination. We conclude that Atm-mediated ROS regulation is essential for proper DNA recombination, preventing immunodeficiency, and lymphomagenesis.


Cell Stem Cell | 2010

Cadherin-Based Adhesion Is a Potential Target for Niche Manipulation to Protect Hematopoietic Stem Cells in Adult Bone Marrow

Kentaro Hosokawa; Fumio Arai; Hiroki Yoshihara; Hiroko Iwasaki; Mark J. Hembree; Tong Yin; Yuka Nakamura; Yumiko Gomei; Keiyo Takubo; Haruko Shiama; Sahoko Matsuoka; Linheng Li; Toshio Suda

During postnatal life, hematopoietic stem cells (HSCs) are maintained in specialized bone marrow (BM) niches (Morrison and Spradling, 2008; Wilson and Trumpp, 2006; Yin and Li, 2006). Cadherins are major cell adhesion molecules responsible for Ca2+-dependent cell-cell interaction (Gumbiner, 1996), but the role of cadherin function, and more specifically N-cadherin, in HSC-niche interactions has been controversial (Li and Zon, 2010). In this study, we analyzed the expression of various cadherin (cad) genes in long-term HSCs (LT-HSCs) and subpopulations of the cells isolated from the endosteum.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Role of Endothelial Cell–Derived Angptl2 in Vascular Inflammation Leading to Endothelial Dysfunction and Atherosclerosis Progression

Eiji Horio; Tsuyoshi Kadomatsu; Keishi Miyata; Yasumichi Arai; Kentaro Hosokawa; Yasufumi Doi; Toshiharu Ninomiya; Haruki Horiguchi; Motoyoshi Endo; Mitsuhisa Tabata; Hirokazu Tazume; Zhe Tian; Otowa Takahashi; Kazutoyo Terada; Motohiro Takeya; Hiroyuki Hao; Nobuyoshi Hirose; Takashi Minami; Toshio Suda; Yutaka Kiyohara; Hisao Ogawa; Koichi Kaikita; Yuichi Oike

Objective—Cardiovascular disease (CVD), the most common morbidity resulting from atherosclerosis, remains a frequent cause of death. Efforts to develop effective therapeutic strategies have focused on vascular inflammation as a critical pathology driving atherosclerosis progression. Nonetheless, molecular mechanisms underlying this activity remain unclear. Here, we ask whether angiopoietin-like protein 2 (Angptl2), a proinflammatory protein, contributes to vascular inflammation that promotes atherosclerosis progression. Approach and Results—Histological analysis revealed abundant Angptl2 expression in endothelial cells and macrophages infiltrating atheromatous plaques in patients with cardiovascular disease. Angptl2 knockout in apolipoprotein E–deficient mice (ApoE−/−/Angptl2−/−) attenuated atherosclerosis progression by decreasing the number of macrophages infiltrating atheromatous plaques, reducing vascular inflammation. Bone marrow transplantation experiments showed that Angptl2 deficiency in endothelial cells attenuated atherosclerosis development. Conversely, ApoE−/− mice crossed with transgenic mice expressing Angptl2 driven by the Tie2 promoter (ApoE−/−/Tie2-Angptl2 Tg), which drives Angptl2 expression in endothelial cells but not monocytes/macrophages, showed accelerated plaque formation and vascular inflammation because of increased numbers of infiltrated macrophages in atheromatous plaques. Tie2-Angptl2 Tg mice alone did not develop plaques but exhibited endothelium-dependent vasodilatory dysfunction, likely because of decreased production of endothelial cell–derived nitric oxide. Conversely, Angptl2−/− mice exhibited less severe endothelial dysfunction than did wild-type mice when fed a high-fat diet. In vitro, Angptl2 activated proinflammatory nuclear factor-&kgr;B signaling in endothelial cells and increased monocyte/macrophage chemotaxis. Conclusions—Endothelial cell–derived Angptl2 accelerates vascular inflammation by activating proinflammatory signaling in endothelial cells and increasing macrophage infiltration, leading to endothelial dysfunction and atherosclerosis progression.

Collaboration


Dive into the Kentaro Hosokawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshio Suda

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keisuke Ito

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge