Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kentaro Miyake is active.

Publication


Featured researches published by Kentaro Miyake.


Cell Cycle | 2017

Intra-arterial administration of tumor-targeting Salmonella typhimurium A1-R regresses a cisplatin-resistant relapsed osteosarcoma in a patient-derived orthotopic xenograft (PDOX) mouse model.

Kentaro Igarashi; Kei Kawaguchi; Takashi Murakami; Tasuku Kiyuna; Kentaro Miyake; Scott D. Nelson; Sarah M. Dry; Yunfeng Li; Jane Yanagawa; Tara A. Russell; Arun S. Singh; Norio Yamamoto; Katsuhiro Hayashi; Hiroaki Kimura; Shinji Miwa; Hiroyuki Tsuchiya; Fritz C. Eilber; Robert M. Hoffman

ABSTRACT Previously, a patient-derived orthotopic xenograft (PDOX) model was established with a lung metastasis from an osteosarcoma patient which developed after adjuvant cisplatinum (CDDP) treatment. In this model, we previously demonstrated the efficacy of trabectedin (TRAB) and temozolomide (TEM) compared with CDDP. In the present report, osteosarcoma tissue was implanted orthotopically in the distal femur of mice which were randomized into the following groups when tumor volume reached approximately 100 mm3; On day 14 after initiation of treatment, all but CDDP significantly inhibited tumor volume growth compared with untreated controls. Control (G1): 793.7 ± 215.0 mm3; CDDP (G2): 588.1 ± 176.9 mm3; Salmonella typhimurium A1-R (S. typhimurium A1-R) intravenous (i.v.) (G3): 269.7 ± 72.7 mm3; S. typhimurium A1-R intra-arterial (i.a.) (G4): 70.2 ± 18.9 mm3 (CDDP: p = 0.056; S. typhimurium A1-R i.v.: p = 0.0001; S. typhimurium A1-R i.a.: p = 0.00003, all vs. untreated controls). i.a. administration of S. typhimurium A1-R was significantly more effective than either CDDP (p = 0.00007), or i.v. administration of S. typhimurium A1-R (p = 0.00007) and significantly regressed the tumor volume compared with day 0 (p = 0.001). The new model of i.a. administration of S. typhimurium A1-R has great promise for the treatment of recalcitrant osteosarcoma.


Journal of Cellular Biochemistry | 2017

High Efficacy of Pazopanib on an Undifferentiated Spindle‐cell Sarcoma Resistant to First‐line Therapy Is Identified with a Patient‐derived Orthotopic Xenograft (PDOX) Nude Mouse Model

Kentaro Igarashi; Kei Kawaguchi; Takashi Murakami; Tasuku Kiyuna; Kentaro Miyake; Arun S. Singh; Scott D. Nelson; Sarah M. Dry; Yunfeng Li; Norio Yamamoto; Katsuhiro Hayashi; Hiroaki Kimura; Shinji Miwa; Hiroyuki Tsuchiya; Fritz C. Eilber; Robert M. Hoffman

Undifferentiated spindle‐cell sarcoma (USCS) is a recalcitrant cancer. Our laboratory pioneered the patient‐derived orthotopic xenograft (PDOX) nude mouse model with the technique of surgical orthotopic implantation (SOI). In the present study, we evaluated the efficacy of standard first‐line chemistry of doxorubicin (DOX), gemcitabine (GEM) combined with docetaxel (DOC), compared to pazopanib (PAZ), a multi‐targeting tyrosine‐kinase inhibitor, in an USCS PDOX model. A high‐grade USCS from a striated muscle of the patients was grown orthotopically in the right biceps femoris muscle of nude mice to establish the PDOX model. The PDOX models were randomized into the following groups when tumor volume reached 100 mm3: G1, control without treatment; G2, DOX (3 mg/kg, intraperitoneal (i.p.) injection, weekly, for 2 weeks); G3, GEM (100 mg/kg, i.p., weekly, for 2 weeks) combined with DOC (20 mg/kg, i.p., once); G4, PAZ (100 mg/kg, p.o., daily, for 14 days). All treatments except DOX significantly inhibited tumor growth compared to untreated control on day 14 after treatment initiation. Tumor sizes were as fallows: control (G1): 332.0 ± 58.7 mm3; DOX (G2): 316.9 ± 55.9 mm3, P = 0.605; GEM + DOC (G3): 228.9 ± 39.8 mm3, P = 0.001; PAZ (G4): 173.8 ± 23.3 mm3, P < 0.0001. PAZ showed significantly more efficacy compared to other therapies evaluated: DOX (P < 0.0001), GEM + DOC (P = 0.006). There were no animal deaths in any group and body weight of treated mice was not significantly different in each group. The present results demonstrate that the PDOX model of USCS can identify a promising novel agent with significantly greater efficacy than first‐line therapy for this recalcitrant disease. J. Cell. Biochem. 118: 2739–2743, 2017.


Oncotarget | 2017

A patient-derived orthotopic xenograft (PDOX) mouse model of a cisplatinum-resistant osteosarcoma lung metastasis that was sensitive to temozolomide and trabectedin: implications for precision oncology

Kentaro Igarashi; Takashi Murakami; Kei Kawaguchi; Tasuku Kiyuna; Kentaro Miyake; Yong Zhang; Scott D. Nelson; Sarah M. Dry; Yunfeng Li; Jane Yanagawa; Tara A. Russell; Arun S. Singh; Hiroyuki Tsuchiya; Irmina A. Elliott; Fritz C. Eilber; Robert M. Hoffman

In the present study, we evaluated the efficacy of trabectedin (TRAB) and temozolomide (TEM) compared to cisplatinum (CDDP) on a patient-derived orthotopic xenogrraft (PDOX) of a lung-metastasis from an osteosarcoma of a patient who failed CDDP therapy. Osteosarcoma resected from the patient was implanted orthotopically in the distal femur of mice to establish PDOX models which were randomized into the following groups when tumor volume reached approximately 100 mm3: G1, control without treatment; G2, CDDP (6 mg/kg, intraperitoneal injection, weekly, for 2 weeks); G3, TRAB (0.15 mg/kg, intravenous injection, weekly, for 2 weeks); G4, TEM (25 mg/kg, oral, daily, for 14 days). Tumor size and body weight were measured with calipers and a digital balance, respectively, twice a week. On day 14 after initiation of treatment, TEM and TRAB, but not CDDP, significantly inhibited tumor volume compared to untreated control: control (G1): 814.5±258.8 mm3; CDDP (G2): 608.6±126.9 mm3; TRAB (G3): 286.6±133.0 mm3; TEM (G4): 182.9±69.1 mm3. CDDP vs. control, p=0.07; TRAB vs. control, p=0.0004; TEM vs. control p =0.0002; TRAB vs. CDDP, p =0.0002; TEM vs. CDDP, p =0.00003. The results of the present study show that a PDOX model of an osteosarcoma lung-metastasis that recurred after adjuvant CDDP-treatment has identified potentially, highly-effective drugs for this recalcitrant disease, while accurately maintaining the CDDP resistance of the tumor in the patient, thereby demonstrating the potential of the osteosarcoma PDOX model for precision oncology.In the present study, we evaluated the efficacy of trabectedin (TRAB) and temozolomide (TEM) compared to cisplatinum (CDDP) on a patient-derived orthotopic xenogrraft (PDOX) of a lung-metastasis from an osteosarcoma of a patient who failed CDDP therapy. Osteosarcoma resected from the patient was implanted orthotopically in the distal femur of mice to establish PDOX models which were randomized into the following groups when tumor volume reached approximately 100 mm3: G1, control without treatment; G2, CDDP (6 mg/kg, intraperitoneal injection, weekly, for 2 weeks); G3, TRAB (0.15 mg/kg, intravenous injection, weekly, for 2 weeks); G4, TEM (25 mg/kg, oral, daily, for 14 days). Tumor sizes and body weight were measured with calipers and a digital balance twice a week. On day 14 after initiation of treatment, TEM and TRAB, but not CDDP, significantly inhibited tumor volume compared to untreated control: control (G1): 814.5±258.8 mm3; CDDP (G2): 608.6±126.9 mm3, TRAB (G3): 286.6±133.0 mm3; TEM (G4): 182.9±69.1 mm3. CDDP vs. control, p=0.07; TRAB vs. control, p=0.0004; TEM vs. control p =0.0002; TRAB vs. CDDP, p =0.0002; TEM vs. CDDP, p =0.00003. The results of the present study show that a PDOX model of an osteosarcoma lung-metastasis that recurred after adjuvant CDDP-treatment has identified potentially, highly-effective drugs for this recalcitrant disease, while precisely maintaining the CDDP resistance of the tumor in the patient, thereby demonstrating the potential of the osteosarcoma PDOX model for precision oncology.


Oncotarget | 2017

Combination treatment with recombinant methioninase enables temozolomide to arrest a BRAF V600E melanoma in a patient-derived orthotopic xenograft (PDOX) mouse model

Kei Kawaguchi; Kentaro Igarashi; Shukuan Li; Qinghong Han; Yuying Tan; Tasuku Kiyuna; Kentaro Miyake; Takashi Murakami; Bartosz Chmielowski; Scott D. Nelson; Tara A. Russell; Sarah M. Dry; Yunfeng Li; Michiaki Unno; Fritz C. Eilber; Robert M. Hoffman

An excessive requirement for methionine termed methionine dependence, appears to be a general metabolic defect in cancer. We have previously shown that cancer-cell growth can be selectively arrested by methionine deprivation such as with recombinant methioninase (rMETase). The present study used a previously-established patient-derived orthotopic xenograft (PDOX) nude mouse model of BRAF V600E-mutant melanoma to determine the efficacy of rMETase in combination with a first-line melanoma drug, temozolomide (TEM). In the present study 40 melanoma PDOX mouse models were randomized into four groups of 10 mice each: untreated control (n=10); TEM (25 mg/kg, oral 14 consecutive days, n=10); rMETase (100 units, intraperitoneal 14 consecutive days, n=10); combination TEM + rMETase (TEM: 25 mg/kg, oral rMETase: 100 units, intraperitoneal 14 consecutive days, n=10). All treatments inhibited tumor growth compared to untreated control (TEM: p=0.0081, rMETase: p=0.0037, TEM-rMETase: p=0.0024) on day 14 after initiation. However, the combination therapy of TEM and rMETase was significantly more efficacious than either mono-therapy (TEM: p=0.0051, rMETase: p=0.0051). The present study is the first demonstrating the efficacy of rMETase combination therapy in a PDOX model, suggesting potential clinical development, especially in recalcitrant cancers such as melanoma, where rMETase may enhance first-line therapy.


Cell Cycle | 2017

The irony of highly-effective bacterial therapy of a patient-derived orthotopic xenograft (PDOX) model of Ewing's sarcoma, which was blocked by Ewing himself 80 years ago

Takashi Murakami; Tasuku Kiyuna; Kei Kawaguchi; Kentaro Igarashi; Arun S. Singh; Yukihiko Hiroshima; Yong Zhang; Ming Zhao; Kentaro Miyake; Scott D. Nelson; Sarah M. Dry; Yunfeng Li; Jonathan C. DeLong; Thinzar M. Lwin; Takashi Chishima; Kuniya Tanaka; Michael Bouvet; Itaru Endo; Fritz C. Eilber; Robert M. Hoffman

ABSTRACT William B. Coley developed bacterial therapy of cancer more than 100 years ago and had clinical success. James Ewing, a very famous cancer pathologist for whom the Ewing sarcoma is named, was Coleys boss at Memorial Hospital in New York and terminated Coleys bacterial therapy of cancer. A tumor from a patient with soft-tissue Ewings sarcoma, who failed doxorubicin (DOX) therapy, was previously implanted in nude mice to establish a patient-derived orthotopic xenograft (PDOX) model. In the present study, the Ewings sarcoma PDOX was treated with tumor-targeting S. typhimurium A1-R expressing green fluorescent (GFP), alone and in combination with DOX. S. typhimurium A1-R-GFP was detected in the tumors after intratumor (i.t.) or intravenous (i.v.) injection. The combination of S. typhimurium A1-R and DOX significantly reduced tumor weight (37.8 ± 15.6 mg) compared to the untreated control (73.8 ± 10.1 mg, P < 0.01). S. typhimurium A1-R monotherapy-treated tumors tended to be smaller (50.9 ± 17.8 mg, P = 0.051). DOX monotherapy did not show efficacy (66.3 ± 26.4 mg, P = 0.82), as was the case with the patient. The PDOX model faithfully replicated the DOX resistance the Ewings sarcoma had in the patient. S. typhimurium A1-R converted the Ewings sarcoma from DOX resistant to sensitive. One can only wonder how bacterial therapy and immunotherapy of cancer would have developed over the past 80 years if Ewing did not stop Coley.


Oncotarget | 2017

A novel anionic-phosphate-platinum complex effectively targets an undifferentiated pleomorphic sarcoma better than cisplatinum and doxorubicin in a patient-derived orthotopic xenograft (PDOX)

Kentaro Igarashi; Kei Kawaguchi; Takashi Murakami; Tasuku Kiyuna; Kentaro Miyake; Norio Yamamoto; Katsuhiro Hayashi; Hiroaki Kimura; Scott D. Nelson; Sarah M. Dry; Yunfeng Li; Arun S. Singh; Shinji Miwa; Akira Odani; Fritz C. Eilber; Hiroyuki Tsuchiya; Robert M. Hoffman

A patient high-grade undifferentiated pleomorphic soft-tissue sarcoma (UPS) from a striated muscle was previously orthotopically implanted in the right biceps femoris muscle of nude mice to establish a patient-derived orthotopic xenograft (PDOX) nude-mouse model. In the present study, two weeks after orthotopic transplantation of the UPS, mice were treated intraperitoneally with cisplatinum (CDDP), doxorubicin (DOX) or a novel anionic-phosphate-platinum compound 3Pt. Treatments were repeated weekly for a total of 3 times. Six weeks after transplantation, all mice were sacrificed and evaluated. After two weeks treatment, tumor sizes were as follows: control (G1): 2208.3 mm3; CDDP (G2): 841.8±3 mm3, p=0.0001; DOX (G3): 693.1±3 mm3, p=6.56E-7; 3Pt (G4): 333.7±1 mm3, p=4.8E-8. 3Pt showed significantly more efficacy compared to other therapy drugs tested: CDDP (p=0.0002), DOX (p=0.001). There were no animal deaths in any of the four groups. The present results suggest 3Pt is a promising new candidate for UPS since it was demonstrated to be effective in a PDOX model.A patient high-grade undifferentiated pleomorphic soft-tissue sarcoma (UPS) from a striated muscle was previously orthotopically implanted in the right biceps femoris muscle of nude mice to establish a patient-derived orthotopic xenograft (PDOX) nude-mouse model. In the present study, two weeks after orthotopic transplantation of the UPS, mice were treated intraperitoneally with cisplatinum (CDDP), doxorubicin (DOX) or a novel anionic-phosphate-platinum compound 3Pt. Treatments were repeated weekly for a total of 3 times. Six weeks after transplantation, all mice were sacrificed and evaluated. After two weeks treatment, tumor sizes were as follows: control (G1): 2208.3 mm3; CDDP (G2): 841.8±3 mm3, p=0.0001; DOX (G3): 693.1±3 mm3, p=6.56E-7; 3Pt (G4): 333.7±1 mm3, p=4.8E-8. 3Pt showed significantly more efficacy compared to other therapy drugs tested: CDDP (p=0.0002), DOX (p=0.001). There were no animal deaths in any of the four groups. The present results suggest 3Pt is a promising new candidate for UPS since it was demonstrated to be effective in a PDOX model.


Oncotarget | 2018

Recombinant methioninase (rMETase) is an effective therapeutic for BRAF-V600E-negative as well as -positive melanoma in patient-derived orthotopic xenograft (PDOX) mouse models

Kei Kawaguchi; Kentaro Igarashi; Shukuan Li; Qinghong Han; Yuying Tan; Kentaro Miyake; Tasuku Kiyuna; Masuyo Miyake; Takashi Murakami; Bartosz Chmielowski; Scott D. Nelson; Tara A. Russell; Sarah M. Dry; Yunfeng Li; Michiaki Unno; Fritz C. Eilber; Robert M. Hoffman

Melanoma is a recalcitrant disease. Melanoma patients with the BRAF-V600E mutation have been treated with the drug vemurafenib (VEM) which targets this mutation. However, we previously showed that VEM is not very effective against a BRAF-V600E melanoma mutant in a patient-derived orthotopic xenograft (PDOX) model. In contrast, we demonstrated that recombinant methioninase (rMETase) which targets the general metabolic defect in cancer of methionine dependence, was effective against the BRAF-V600E mutant melanoma PDOX model. In the present study, we demonstrate that rMETase is effective against a BRAF-V600E-negative melanoma PDOX which we established. Forty BRAF-V600E-negative melanoma PDOX mouse models were randomized into four groups of 10 mice each: untreated control (n = 10); temozolomide (TEM) (25 mg/kg, p.o., 14 consecutive days, n = 10); rMETase (100 units, i.p., 14 consecutive days, n = 10); TEM + rMETase (TEM: 25 mg/kg, p.o., rMETase: 100 units, i.p., 14 consecutive days, n = 10). All treatments inhibited tumor growth compared to untreated control (TEM: p = 0.0003, rMETase: p = 0.0006, TEM/rMETase: p = 0.0002) on day 14 after initiation. Combination therapy of TEM and rMETase was significantly more effective than either mono-therapy (TEM: p = 0.0113, rMETase: p = 0.0173). The present study shows that TEM combined with rMETase is effective for BRAF-V600E-negative melanoma PDOX similar to the BRAF-V600E-positive mutation melanoma. These results suggest rMETase in combination with first-line chemotherapy can be highly effective in both BRAF-V600E-negative as well as BRAF-V600E-positive melanoma and has clinical potential for this recalcitrant disease.


Journal of Cellular Biochemistry | 2017

Analysis of Stroma Labeling During Multiple Passage of a Sarcoma Imageable Patient-Derived Orthotopic Xenograft (iPDOX) in Red Fluorescent Protein Transgenic Nude Mice

Tasuku Kiyuna; Takashi Murakami; Yasunori Tome; Kei Kawaguchi; Kentaro Igarashi; Kentaro Miyake; Fuminori Kanaya; Arun S. Singh; Fritz C. Eilber; Robert M. Hoffman

A patient‐derived orthotopic xenograft (PDOX) model of undifferentiated pleomorphic sarcoma (UPS) was previously established that acquired red fluorescent protein (RFP)‐expressing stroma by growth in an RFP transgenic nude mouse. In the present study, an imageable PDOX model (iPDOX) of UPS was established by orthotopic implantation in the biceps femoris of transgenic RFP nude mice. After the tumors grew to a diameter of 10 mm, they were harvested and the brightest portion of the tumors were subsequently orthotopically transplanted to both RFP and non‐colored nude mice. The UPS PDOX tumor was again transplanted to RFP transgenic and non‐colored nude mice, and finally a 3rd passage was made in the same manner. Five UPS tumors from each passage in both RFP and non‐colored mouse models were harvested. The FV1,000 confocal microscope was used to visualize and quantitate the RFP area of the resected tumors. The average percent fluorescent area in the first passage of RFP mice was 34 ± 22%; in the second passage, 34 ± 20%; and 36 ± 11% in the third passage of RFP transgenic nude mice. The average tumor RFP area in the first passage from RFP mice to non‐colored mice was 20 ± 7%; in the second passage, 28 ± 11%; in the third passage was 27 ± 13%. The present results demonstrate the extensive and stable acquisition of stroma by the UPS‐tumor growing orthotopically in transgenic RFP nude mice (iPDOX). This model can be used for screening for effective drugs for individual patients and drug discovery. J. Cell. Biochem. 118: 3367–3371, 2017.


Cell Cycle | 2018

Targeting methionine with oral recombinant methioninase (o-rMETase) arrests a patient-derived orthotopic xenograft (PDOX) model of BRAF-V600E mutant melanoma: implications for chronic clinical cancer therapy and prevention

Kei Kawaguchi; Qinghong Han; Shukuan Li; Yuying Tan; Kentaro Igarashi; Tasuku Kiyuna; Kentaro Miyake; Masuyo Miyake; Bartosz Chmielowski; Scott D. Nelson; Tara A. Russell; Sarah M. Dry; Yunfeng Li; Arun S. Singh; Mark A. Eckardt; Michiaki Unno; Fritz C. Eilber; Robert M. Hoffman

ABSTRACT The elevated methionine (MET) use by cancer cells is termed MET dependence and may be the only known general metabolic defect in cancer. Targeting MET by recombinant methioninase (rMETase) can arrest the growth of cancer cells in vitro and in vivo. We previously reported that rMETase, administrated by intra-peritoneal injection (ip-rMETase), could inhibit tumor growth in a patient-derived orthotopic xenograft (PDOX) model of a BRAF-V600E mutant melanoma. In the present study, we compared ip-rMETase and oral rMETase (o-rMETase) for efficacy on the melanoma PDOX. Melanoma PDOX nude mice were randomized into four groups of 5 mice each: untreated control; ip-rMETase (100 units, i.p., 14 consecutive days); o-rMETase (100 units, p.o., 14 consecutive days); o-rMETase+ip-rMETase (100 units, p.o.+100 units, i.p., 14 consecutive days). All treatments inhibited tumor growth on day 14 after treatment initiation, compared to untreated control (ip-rMETase, p<0.0001; o-rMETase, p<0.0001; o-rMETase+ip-rMETase, p<0.0001). o-rMETase was significantly more effective than ip-rMETase (p = 0.0086). o-rMETase+ip-rMETase was significantly more effective than either mono-therapy: ip-rMETase, p = 0.0005; or o-rMETase, p = 0.0367. The present study is the first demonstrating that o-rMETase is effective as an anticancer agent. The results of the present study indicate the potential of clinical development of o-rMETase as an agent for chronic cancer therapy and for cancer prevention and possibly for life extension since dietary MET reduction extends life span in many animal models.


Oncotarget | 2018

Intra-tumor L-methionine level highly correlates with tumor size in both pancreatic cancer and melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse models

Kei Kawaguchi; Qinghong Han; Shukuan Li; Yuying Tan; Kentaro Igarashi; Kentaro Miyake; Tasuku Kiyuna; Masuyo Miyake; Bartosz Bartosz; Scott D. Nelson; Tara A. Russell; Sarah M. Dry; Yunfeng Li; Arun S. Singh; Mark A. Eckardt; Michiaki Unno; Fritz C. Eilber; Robert M. Hoffman

An excessive requirement for methionine (MET) for growth, termed MET dependence, appears to be a general metabolic defect in cancer. We have previously shown that cancer-cell growth can be selectively arrested by MET restriction such as with recombinant methioninase (rMETase). In the present study, we utilized patient-derived orthotopic xenograft (PDOX) nude mouse models with pancreatic cancer or melanoma to determine the relationship between intra-tumor MET level and tumor size. After the tumors grew to 100 mm3, the PDOX nude mice were divided into two groups: untreated control and treated with rMETase (100 units, i.p., 14 consecutive days). On day 14 from initiation of treatment, intra-tumor MET levels were measured and found to highly correlate with tumor volume, both in the pancreatic cancer PDOX (p<0.0001, R2=0.89016) and melanoma PDOX (p<0.0001, R2=0.88114). Tumors with low concentration of MET were smaller. The present results demonstrates that patient tumors are highly dependent on MET for growth and that rMETase effectively lowers tumor MET.

Collaboration


Dive into the Kentaro Miyake's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tasuku Kiyuna

University of California

View shared research outputs
Top Co-Authors

Avatar

Kei Kawaguchi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunfeng Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Arun S. Singh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah M. Dry

University of California

View shared research outputs
Top Co-Authors

Avatar

Masuyo Miyake

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge