Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kentaro Yuge is active.

Publication


Featured researches published by Kentaro Yuge.


Circulation | 2005

Postinfarction Gene Therapy Against Transforming Growth Factor-β Signal Modulates Infarct Tissue Dynamics and Attenuates Left Ventricular Remodeling and Heart Failure

Hideshi Okada; Genzou Takemura; Ken-ichiro Kosai; Yiwen Li; Tomoyuki Takahashi; Masayasu Esaki; Kentaro Yuge; Shusaku Miyata; Rumi Maruyama; Atsushi Mikami; Shinya Minatoguchi; Takako Fujiwara; Hisayoshi Fujiwara

Background—Fibrosis and progressive failure are prominent pathophysiological features of hearts after myocardial infarction (MI). We examined the effects of inhibiting transforming growth factor-β (TGF-β) signaling on post-MI cardiac fibrosis and ventricular remodeling and function. Methods and Results—MI was induced in mice by left coronary artery ligation. An adenovirus harboring soluble TGF-β type II receptor (Ad.CAG-sTβRII), a competitive inhibitor of TGF-β, was then injected into the hindlimb muscles on day 3 after MI (control, Ad.CAG-LacZ). Post-MI survival was significantly improved among sTβRII-treated mice (96% versus control at 71%), which also showed a significant attenuation of ventricular dilatation and improved function 4 weeks after MI. At the same time, histological analysis showed reduced fibrous tissue formation. Although MI size did not differ in the 2 groups, MI thickness was greater and circumference was smaller in the sTβRII-treated group; within the infarcted area, α-smooth muscle actin–positive cells were abundant, which might have contributed to infarct contraction. Apoptosis among myofibroblasts in granulation tissue during the subacute stage (10 days after MI) was less frequent in the sTβRII-treated group, and sTβRII directly inhibited Fas-induced apoptosis in cultured myofibroblasts. Finally, treatment of MI-bearing mice with sTβRII was ineffective if started during the chronic stage (4 weeks after MI). Conclusions—Postinfarction gene therapy aimed at suppressing TGF-β signaling mitigates cardiac remodeling by affecting cardiac fibrosis and infarct tissue dynamics (apoptosis inhibition and infarct contraction). This suggests that such therapy may represent a new approach to the treatment of post-MI heart failure, applicable during the subacute stage.


Circulation | 2003

Postinfarction Treatment With an Adenoviral Vector Expressing Hepatocyte Growth Factor Relieves Chronic Left Ventricular Remodeling and Dysfunction in Mice

Yiwen Li; Genzou Takemura; Ken-ichiro Kosai; Kentaro Yuge; Satoshi Nagano; Masayasu Esaki; Kazuko Goto; Tomoyuki Takahashi; Kenji Hayakawa; Masahiko Koda; Yukinori Kawase; Rumi Maruyama; Hideshi Okada; Shinya Minatoguchi; Hiroyuki Mizuguchi; Takako Fujiwara; Hisayoshi Fujiwara

Background—Hepatocyte growth factor (HGF) is implicated in tissue regeneration, angiogenesis, and antiapoptosis. However, its chronic effects are undetermined on postinfarction left ventricular (LV) remodeling and heart failure. Methods and Results—In mice, on day 3 after myocardial infarction (MI), adenovirus encoding human HGF (Ad.CAG-HGF) was injected into the hindlimb muscles (n=13). As a control (n=15), LacZ gene was used. A persistent increase in plasma human HGF was confirmed in the treated mice: 1.0±0.2 ng/mL 4 weeks later. At 4 weeks after MI, the HGF-treated mice showed improved LV remodeling and dysfunction compared with controls, as indicated by the smaller LV cavity and heart/body weight ratio, greater % fractional shortening and LV ±dP/dt, and lower LV end-diastolic pressure. The cardiomyocytes near MI, including the papillary muscles and trabeculae, were greatly hypertrophied in the treated mice. The old infarct size was similar between the groups, but the infarct wall was thicker in the treated mice, where the density of noncardiomyocyte cells, including vessels, was greater. Fibrosis of the ventricular wall was significantly reduced in them. Examination of 10-day-old MI revealed no proliferation or apoptosis but showed augmented expression of c-Met/HGF receptor in cardiomyocytes near MI, whereas a greater proliferating activity and smaller apoptotic rate of granulation tissue cells in the HGF-treated hearts was observed compared with controls. Conclusions—Postinfarction HGF gene therapy improved LV remodeling and dysfunction through hypertrophy of cardiomyocytes, infarct wall thickening, preservation of vessels, and antifibrosis. These findings imply a novel therapeutic approach against postinfarction heart failure.


Circulation Research | 2004

Critical Roles for the Fas/Fas Ligand System in Postinfarction Ventricular Remodeling and Heart Failure

Yiwen Li; Genzou Takemura; Ken-ichiro Kosai; Tomoyuki Takahashi; Hideshi Okada; Shusaku Miyata; Kentaro Yuge; Satoshi Nagano; Masayasu Esaki; Ngin Cin Khai; Kazuko Goto; Atsushi Mikami; Rumi Maruyama; Shinya Minatoguchi; Takako Fujiwara; Hisayoshi Fujiwara

In myocardial infarction (MI), granulation tissue cells disappear via apoptosis to complete a final scarring with scanty cells. Blockade of this apoptosis was reported to improve post-MI ventricular remodeling and heart failure. However, the molecular biological mechanisms for the apoptosis are unknown. Fas and Fas ligand were overexpressed in the granulation tissue at the subacute stage of MI (1 week after MI) in mice, where apoptosis frequently occurred. In mice lacking functioning Fas (lpr strain) and in those lacking Fas ligand (gld strain), apoptotic rate of granulation tissue cells was significantly fewer compared with that of genetically controlled mice, and post-MI ventricular remodeling and dysfunction were greatly attenuated. Mice were transfected with adenovirus encoding soluble Fas (sFas), a competitive inhibitor of Fas ligand, on the third day of MI. The treatment resulted in suppression of granulation tissue cell apoptosis and produced a thick, cell-rich infarct scar containing rich vessels and bundles of smooth muscle cells with a contractile phenotype at the chronic stage (4 weeks after MI). This accompanied not only alleviation of heart failure but also survival improvement. However, the sFas gene delivery during scar tissue phase was ineffective, suggesting that beneficial effects of the sFas gene therapy owes to inhibition of granulation tissue cell apoptosis. The Fas/Fas ligand interaction plays a critical role for granulation tissue cell apoptosis after MI. Blockade of this apoptosis by interfering with the Fas/Fas ligand interaction may become one of the therapeutic strategies against chronic heart failure after large MI.


Oncogene | 1998

CIS3 and JAB have different regulatory roles in interleukin-6 mediated differentiation and STAT3 activation in M1 leukemia cells

Ritsu Suzuki; Hiroshi Sakamoto; Hideo Yasukawa; Masaaki Masuhara; Toru Wakioka; Atsuo T. Sasaki; Kentaro Yuge; Setsuro Komiya; Akio Inoue; Akihiko Yoshimura

We have reported JAK-signaling modulators, CIS1 (cytokine-inducible SH2 protein-1), CIS3 and JAB (JAK2 binding protein), which are structurally related. In M1 myeloid leukemia cells, CIS3 was induced by neither interleukin 6 (IL6) nor interferon γ (IFNγ), while JAB was induced strongly by IFNγ and slightly by IL6 and leukemia inhibitory factor (ILF). Forced expression of CIS3 and JAB in M1 cells prevented IL6- or LIF-induced growth arrest and differentiation, even when their expression levels were comparable to endogenous ones in several cell lines such as HEL, UT-7, IFNγ-treated M1, and CTLL2 cells. Pretreatment of parental M1 cells with IFNγ but not IFNβ resulted in suppression of LIF-induced STAT3 activation and differentiation, further supporting that physiological level of JAB is sufficient to inhibit LIF-signaling. However, unlike JAB, CIS3 did not inhibit IFNγ-induced growth arrest, suggesting a difference in cytokine specificity between CIS3 and JAB. CIS3 inhibited STAT3 activation with slower kinetics than JAB and allowed rapid c-fos induction and partial FcγRI expression in response to IL6. In 293 cells, CIS3 as well as JAB bound to JAK2 tyrosine kinase domain (JH1), and inhibited its kinase activity, however, the effect of CIS3 on tyrosine kinase activity was weaker than that of JAB, indicating that CIS3 possesses lower affinity to JAK kinases than JAB. These findings suggest that CIS3 is a weaker inhibitor than JAB against JAK signaling, and JAB and CIS3 possess different regulatory roles in cytokine signaling.


Laboratory Investigation | 2005

Local overexpression of HB-EGF exacerbates remodeling following myocardial infarction by activating noncardiomyocytes

Tomoyuki Takahashi; Xue-Hai Chen; Ngin Cin Khai; Masayasu Esaki; Kazuko Goto; Genzou Takemura; Rumi Maruyama; Shinya Minatoguchi; Takako Fujiwara; Satoshi Nagano; Kentaro Yuge; Takao Kawai; Yoshiteru Murofushi; Hisayoshi Fujiwara; Ken-ichiro Kosai

Insulin-like growth factor (IGF), hepatocyte growth factor (HGF), and heparin-binding epidermal growth factor-like growth factor (HB-EGF) are cardiogenic and cardiohypertrophic growth factors. Although the therapeutic effects of IGF and HGF have been well demonstrated in injured hearts, it is uncertain whether natural upregulation of HB-EGF after myocardial infarction (MI) plays a beneficial or pathological role in the process of remodeling. To answer this question, we conducted adenoviral HB-EGF gene transduction in in vitro and in vivo injured heart models, allowing us to highlight and explore the HB-EGF-induced phenotypes. Overexpressed HB-EGF had no cytoprotective or additive death-inducible effect on Fas-induced apoptosis or oxidative stress injury in primary cultured mouse cardiomyocytes, although it significantly induced hypertrophy of cardiomyocytes and proliferation of cardiac fibroblasts. Locally overexpressed HB-EGF in the MI border area in rabbit hearts did not improve cardiac function or exhibit an angiogenic effect, and instead exacerbated remodeling at the subacute and chronic stages post-MI. Namely, it elevated the levels of apoptosis, fibrosis, and the accumulation of myofibroblasts and macrophages in the MI area, in addition to inducing left ventricular hypertrophy. Thus, upregulated HB-EGF plays a pathophysiological role in injured hearts in contrast to the therapeutic roles of IGF and HGF. These results imply that regulation of HB-EGF may be a therapeutic target for treating cardiac hypertrophy and fibrosis.


Journal of General Virology | 1994

Functional oligomerization of purified human papillomavirus types 16 and 6b E7 proteins expressed in Escherichia coli

Masanobu Chinami; Shigeo Sasaki; Naoki Hachiya; Kentaro Yuge; Takeo Ohsugi; Hiroshi Maeda; Masahisa Shingu

Purified non-fused soluble human papillomavirus type 16 and 6b E7 proteins expressed in Escherichia coli were found to form oligomers. For both proteins, several degrees of oligomerization were demonstrated by gel filtration, dynamic laser light scattering and scanning electron microscopy. Oligomerization was dependent on the concentration of E7 protein. Oligomerized E7 proteins were able to bind the retinoblastoma gene product pRB and stimulated DNA synthesis when introduced into cells.


Protein Expression and Purification | 1991

Refolding and purification of human papillomavirus type 16 E7-IacZ fusion protein expressed in Escherichia coli

Masanobu Chinami; Kentaro Yuge; Keiichi Kawano; Masahisa Shingu

Human papillomavirus (HPV) type 16 E7-lacZ fusion protein was produced in Escherichia coli, extracted as inclusion bodies, refolded with reducing reagents, and subjected to gel filtration. The refolded protein was purified by ion-exchange column chromatography, resulting in a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 1H nuclear magnetic resonance spectral changes were observed in the high field methyl region in the presence of Zn2+ ion, suggesting that the refolded form of the fusion protein is possibly renaturated into the putative zinc finger motif (C. Edmond and K. H. Vousden, 1989, J. Virol. 63, 2650-2656) and supporting the data of J. A. Rawls, R. Pusztai, and M. Green (1990, J. Virol. 64, 6121-6129) on zinc binding to E7 protein using radioisotopically labeled zinc ion.


Modern Rheumatology | 2012

Successful treatment of rectal ulcers in a patient with systemic lupus erythematosus using corticosteroids and tacrolimus

Shinjiro Kaieda; Teppei Kobayashi; Mariko Moroki; Seiyo Honda; Kentaro Yuge; Hiroshi Kawano; Keiichi Mitsuyama; Michio Sata; Hiroaki Ida; Tomoaki Hoshino; Takaaki Fukuda

Systemic lupus erythematosus (SLE) is frequently accompanied by gastrointestinal symptoms. Although all parts of the gastrointestinal tract may be affected, colonic involvement is quite rare. Colonic ulceration, particularly in the rectum, is associated with a high mortality rate in patients with SLE, despite immunosuppressive therapy. While a standard regimen for treating rectal ulcers as a complication of SLE has not been established, combination therapy with steroids and immunosuppressive agents is necessary because of the associated high mortality rate. In this report, we describe a patient with SLE whose condition was complicated with ulcerative lesions in the rectum and sigmoid colon; the lesions were successfully treated with a combination of corticosteroids and tacrolimus therapy. Tacrolimus could be a useful additional or alternative modality for treating rectal involvement in SLE.


International Journal of Molecular Medicine | 2014

Intramuscular injection of adenoviral hepatocyte growth factor at a distal site ameliorates dextran sodium sulfate-induced colitis in mice

Kentaro Yuge; Tomoyuki Takahashi; Ngin Cin Khai; Kazuko Goto; Takako Fujiwara; Hisayoshi Fujiwara; Ken-ichiro Kosai

Inflammatory bowel disease (IBD) severely affects the quality of life of patients. At present, there is no clinical solution for this condition; therefore, there is a need for innovative therapies for IBD. Hepatocyte growth factor (HGF) exerts various biological activities in various organs. However, a clinically applicable and effective HGF-based therapy for IBD has yet to be developed. In this study, we examined the therapeutic effect of injecting an adenoviral vector encoding the human HGF gene (Ad.HGF) into the hindlimbs of mice with dextran sodium sulfate (DSS)-induced colitis. Plasma levels of circulating human HGF (hHGF) were measured in injected mice. The results showed that weight loss and colon shortening were significantly lower in Ad.HGF-infected mice as compared to control (Ad.LacZ-infected) colitic mice. Additionally, inflammation and crypt scores were significantly reduced in the entire length of the colon, particularly in the distal section. This therapeutic effect was associated with increased cell proliferation and an antiapoptotic effect, as well as a reduction in the number of CD4+ cells and a decreased CD4/CD8 ratio. The levels of inflammatory, as well as Th1 and Th2 cytokines were higher in Ad.HGF-infected mice as compared to the control colitic mice. Thus, systemically circulating hHGF protein, produced by an adenovirally transduced hHGF gene introduced at distal sites in the limbs, significantly ameliorated DSS-induced colitis by promoting cell proliferation (i.e., regeneration), preventing apoptosis, and immunomodulation. Owing to its clinical feasibility and potent therapeutic effects, this method may be developed into a clinical therapy for treating IBD.


Blood | 1998

A Janus Kinase Inhibitor, JAB, Is an Interferon-γ–Inducible Gene and Confers Resistance to Interferons

Hiroshi Sakamoto; Hideo Yasukawa; Masaaki Masuhara; Shyu Tanimura; Atsuo T. Sasaki; Kentaro Yuge; Motoaki Ohtsubo; Akira Ohtsuka; Takasi Fujita; Tsunetaka Ohta; Yusuke Furukawa; Satsuki Iwase; Hisashi Yamada; Akihiko Yoshimura

Collaboration


Dive into the Kentaro Yuge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge