Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenya Shitara is active.

Publication


Featured researches published by Kenya Shitara.


Journal of Biological Chemistry | 2003

The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity

Toyohide Shinkawa; Kazuyasu Nakamura; Naoko Yamane; Emi Shoji-Hosaka; Yutaka Kanda; Mikiko Sakurada; Kazuhisa Uchida; Hideharu Anazawa; Mitsuo Satoh; Motoo Yamasaki; Nobuo Hanai; Kenya Shitara

An anti-human interleukin 5 receptor (hIL-5R) humanized immunoglobulin G1 (IgG1) and an anti-CD20 chimeric IgG1 produced by rat hybridoma YB2/0 cell lines showed more than 50-fold higher antibody-dependent cellular cytotoxicity (ADCC) using purified human peripheral blood mononuclear cells as effector than those produced by Chinese hamster ovary (CHO) cell lines. Monosaccharide composition and oligosaccharide profiling analysis showed that low fucose (Fuc) content of complex-type oligosaccharides was characteristic in YB2/0-produced IgG1s compared with high Fuc content of CHO-produced IgG1s. YB2/0-produced anti-hIL-5R IgG1 was subjected to Lens culinaris aggulutin affinity column and fractionated based on the contents of Fuc. The lower Fuc IgG1 had higher ADCC than the IgG1 before separation. In contrast, the content of bisecting GlcNAc of the IgG1 affected ADCC much less than that of Fuc. In addition, the correlation between Gal and ADCC was not observed. When the combined effect of Fuc and bisecting GlcNAc was examined in anti-CD20 IgG1, only a severalfold increase of ADCC was observed by the addition of GlcNAc to highly fucosylated IgG1. Quantitative PCR analysis indicated that YB2/0 cells had lower expression level of FUT8 mRNA, which codes α1,6-fucosyltransferase, than CHO cells. Overexpression of FUT8 mRNA in YB2/0 cells led to an increase of fucosylated oligosaccharides and decrease of ADCC of the IgG1. These results indicate that the lack of fucosylation of IgG1 has the most critical role in enhancement of ADCC, although several reports have suggested the importance of Gal or bisecting GlcNAc and provide important information to produce the effective therapeutic antibody.


Cancer Research | 2004

Defucosylated Chimeric Anti-CC Chemokine Receptor 4 IgG1 with Enhanced Antibody-Dependent Cellular Cytotoxicity Shows Potent Therapeutic Activity to T-Cell Leukemia and Lymphoma

Rinpei Niwa; Emi Shoji-Hosaka; Mikiko Sakurada; Toyohide Shinkawa; Kazuhisa Uchida; Kazuyasu Nakamura; Kouji Matsushima; Ryuzo Ueda; Nobuo Hanai; Kenya Shitara

Human IgG1 antibodies with low fucose contents in their asparagine-linked oligosaccharides have been shown recently to exhibit potent antibody-dependent cellular cytotoxicity (ADCC) in vitro. To additionally investigate the efficacy of the human IgG1 with enhanced ADCC, we generated the defucosylated chimeric anti-CC chemokine receptor 4 (CCR4) IgG1 antibody KM2760. KM2760 exhibited much higher ADCC using human peripheral blood mononuclear cells (PBMCs) as effector cells compared with the highly fucosylated, but otherwise identical IgG1, KM3060. In addition, KM2760 also exhibited potent ADCC in the presence of lower concentrations of human PBMCs than KM3060. Because CCR4 is a selective marker of T-cell leukemia/lymphoma, the effectiveness of KM2760 for T-cell malignancy was evaluated in several mouse models. First, to compare the antitumor activity of KM2760 and KM3060, we constructed a human PBMC-engrafted mouse model to determine ADCC efficacy with human effector cells. In this model, KM2760 showed significantly higher antitumor efficacy than KM3060, indicating that KM2760 retains its high potency in vivo. Second, KM2760 suppressed tumor growth in both syngeneic and xenograft mouse models in which human PBMCs were not engrafted. Although murine effector cells exhibited marginal ADCC mediated by KM2760 and KM3060, KM2760 unexpectedly showed higher efficacy than KM3060 in a syngeneic mouse model, suggesting that KM2760 functions in murine effector system in vivo via an unknown mechanism that differs from that in human. These results indicate that defucosylated antibodies with enhanced ADCC as well as potent antitumor activity in vivo are promising candidates for the novel antibody-based therapy.


Oncogene | 2000

Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells.

Shinichi Kanno; Nobuyuki Oda; Mayumi Abe; Yoshito Terai; Mikito Ito; Kenya Shitara; Koichi Tabayashi; Masabumi Shibuya; Yasufumi Sato

Vascular endothelial growth factor (VEGF) is a principal regulator of vasculogenesis and angiogenesis. VEGF expresses its effects by binding to two VEGF receptors, Flt-1 and KDR. However, properties of Flt-1 and KDR in the signal transduction of VEGF-mediated effects in endothelial cells (ECs) were not entirely clarified. We investigated this issue by using two newly developed blocking monoclonal antibodies (mAbs) against Flt-1 and KDR. VEGF elicits DNA synthesis and cell migration of human umbilical vein endothelial cells (HUVECs). The pattern of inhibition of these effects by two mAbs indicates that DNA synthesis is preferentially mediated by KDR. In contrast, the regulation of cell migration by VEGF appears to be more complicated. Flt-1 regulates cell migration through modulating actin reorganization, which is essential for cell motility. A distinct signal is generated by KDR, which influences cell migration by regulating cell adhesion via the assembly of vinculin in focal adhesion plaque and tyrosine-phosphorylation of focal adhesion kinase (FAK) and paxillin.


Clinical Cancer Research | 2004

Enhancement of the Antibody-Dependent Cellular Cytotoxicity of Low-Fucose IgG1 Is Independent of FcγRIIIa Functional Polymorphism

Rinpei Niwa; Shigeki Hatanaka; Emi Shoji-Hosaka; Mikiko Sakurada; Yukari Kobayashi; Aya Uehara; Haruhiko Yokoi; Kazuyasu Nakamura; Kenya Shitara

Purpose: The most common polymorphic variant of Fcγ receptor type IIIa (FcγRIIIa), FcγRIIIa-158F, has been associated with inferior clinical responses to anti-CD20 chimeric IgG1 rituximab compared with FcγRIIIa-158V. As we previously found that removal of fucose residues from the oligosaccharides of human IgG1 results in enhanced antibody-dependent cellular cytotoxicity, we compared the effects of the FcγRIIIa gene (FCGR3A) polymorphism on normal and low-fucose versions of rituximab on antibody-dependent cellular cytotoxicity. Experimental Design: The polymorphism at position 158 of FcγRIIIa was determined for the peripheral blood mononuclear cells (PBMCs) of 20 healthy donors. The PBMCs were then used as effector cells to compare the antibody-dependent cellular cytotoxicity of rituximab and a low-fucose version, KM3065. The contributions of the different cell types within the PBMC to antibody-dependent cellular cytotoxicity were examined. Results: We found KM3065-mediated antibody-dependent cellular cytotoxicity was increased 10 to 100-fold compared with rituximab for each of the 20 donors. In contrast to rituximab, KM3065 antibody-dependent cellular cytotoxicity enhancement was similar for both FCGR3A alleles and thus independent of genotype. In addition, antibody-dependent cellular cytotoxicity of both KM3065 and rituximab requires natural killer cells but not monocytes nor polymorphonuclear cells. The antibody-dependent cellular cytotoxicity (ADCC) of each of the 20 donors correlated with the natural killer cell numbers present in the PBMCs. Importantly, using KM3065, the ADCC mediated by effector cells bearing the lower affinity variant FcγRIIIa-158F was significantly increased compared with rituximab-mediated ADCC using effector cells bearing the higher affinity FcγRIIIa-158V receptors. Conclusions: The use of low-fucose antibodies might improve the therapeutic effects of anti-CD20 therapy for all patients independent of FcγRIIIa phenotype beyond that currently seen with even the most responsive patients.


Cancer Research | 2008

Engineered antibodies of IgG1/IgG3 mixed isotype with enhanced cytotoxic activities.

Akito Natsume; Mika In; Hiroyuki Takamura; Tomoaki Nakagawa; Yukiko Shimizu; Kazuko Kitajima; Masako Wakitani; So Ohta; Mitsuo Satoh; Kenya Shitara; Rinpei Niwa

Enhancement of multiple effector functions of an antibody may be a promising approach for antibody therapy. We have previously reported that fucose removal from Fc-linked oligosaccharides greatly enhances antibody-dependent cellular cytotoxicity (ADCC) of therapeutic antibodies. Here, we report a unique approach to enhance complement-dependent cytotoxicity (CDC), another important effector function of antitumor antibodies, by using engineered constant region of human IgG1/IgG3 chimeric isotypes. We systematically shuffled constant domains of IgG1 and IgG3 to generate a comprehensive set of mixed chimeric isotypes of anti-CD20 antibodies. Among these, the variant 1133, consisting of the CH1 and the hinge each from IgG1 and the Fc from IgG3, was unexpectedly found to exhibit markedly enhanced CDC that exceeded wild-type levels. However, it lacked protein A-binding capacity, an important feature for the industrial production. To eliminate this deficiency, a portion in COOH-terminal CH3 domain of 1133 was substituted with IgG1, resulting in full recovery of protein A binding without compromising the enhanced CDC and ADCC activities. The CDC-enhancing effect using a chimeric isotype was also shown in CD52 antigen/antibody system. The ADCC activity of the variants was also maximized by the absence of fucose from its carbohydrate structure, a phenomenon that has previously been observed for wild-type antibodies. Enhanced cytotoxicity of a variant was confirmed in a cynomolgus monkey model. These findings suggest that the variant antibodies with IgG1/IgG3 chimeric constant regions and nonfucosylated oligosaccharides that possess dual-enhanced cytotoxic functions may be an improvement for the next generation of therapeutic antitumor antibodies.


Clinical Cancer Research | 2006

Nonfucosylated Therapeutic IgG1 Antibody Can Evade the Inhibitory Effect of Serum Immunoglobulin G on Antibody-Dependent Cellular Cytotoxicity through its High Binding to FcγRIIIa

Shigeru Iida; Hirofumi Misaka; Miho Inoue; Mami Shibata; Ryosuke Nakano; Naoko Yamane-Ohnuki; Masako Wakitani; Keiichi Yano; Kenya Shitara; Mitsuo Satoh

Purpose: Recent studies have revealed that fucosylated therapeutic IgG1s need high concentrations to compensate for FcγRIIIa-competitive inhibition of antibody-dependent cellular cytotoxicity (ADCC) by endogenous human plasma IgG. Here, we investigated whether ADCC of nonfucosylated therapeutic IgG1 is also influenced by plasma IgG in the same way as fucosylated IgG1s. Experimental Design:Ex vivo ADCC upon CD20+ human B cells was induced by incubation of human whole blood with nonfucosylated and/or fucosylated anti-CD20 IgG1s rituximab, and quantified by measuring the remaining CD19+ human B cells using flow cytometry. Results: Nonfucosylated anti-CD20 showed markedly higher (over 100-fold based on EC50) ex vivo B-cell depletion activity than its fucosylated counterpart in the presence of plasma IgG. The efficacy of fucosylated anti-CD20 was greatly diminished in plasma, resulting in the need for a high concentration (over 1.0 μg/mL) to achieve saturated efficacy. In contrast, nonfucosylated anti-CD20 reached saturated ADCC at lower concentrations (0.01-0.1 μg/mL) with much higher efficacy than fucosylated anti-CD20 in all nine donors through improved FcγRIIIa binding. Noteworthy, the high efficacy of nonfucosylated anti-CD20 was inhibited by addition of fucosylated anti-CD20. Thus, the efficacy of a 1:9 mixture (10 μg/mL) of nonfucosylated and fucosylated anti-CD20s was inferior to that of a 1,000-fold dilution (0.01 μg/mL) of nonfucosylated anti-CD20 alone. Conclusions: Our data showed that nonfucosylated IgG1, not including fucosylated counterparts, can evade the inhibitory effect of plasma IgG on ADCC through its high FcγRIIIa binding. Hence, nonfucosylated IgG1 exhibits strong therapeutic potential through dramatically enhanced ADCC at low doses in humans in vivo.


Expert Opinion on Biological Therapy | 2006

Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies

Mitsuo Satoh; Shigeru Iida; Kenya Shitara

Most of the existing therapeutic antibodies that have been licensed and developed as medical agents are of the human IgG1 isotype, the molecular weight of which is ∼ 150 kDa. Human IgG1 is a glycoprotein bearing two N-linked biantennary complex-type oligosaccharides bound to the antibody constant region (Fc), in which the majority of the oligosaccharides are core fucosylated, and it exercises the effector functions of antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity through the interaction of the Fc with either leukocyte receptors (FcγRs) or complement. Recently, therapeutic antibodies have been shown to improve overall survival as well as time to disease progression in a variety of human malignancies, such as breast, colon and haematological cancers, and genetic analysis of FcγR polymorphisms of cancer patients has demonstrated that ADCC is a major antineoplasm mechanism responsible for clinical efficacy. However, the ADCC of existing licensed therapeutic antibodies has been found to be strongly inhibited by serum due to nonnpecific IgG competing for binding of the therapeutics to FcγRIIIa on natural killer cells, which leads to the requirement of a significant amount of drug and very high costs associated with such therapies. Moreover, enhanced ADCC of non-fucosylated forms of therapeutic antibodies through improved FcγRIIIa binding is shown to be inhibited by the fucosylated counterparts. In fact, non-fucosylated therapeutic antibodies, not including the fucosylated forms, exhibit the strongest and most saturable in vitro and ex vivo ADCC among such antibody variants with improved FcγRIIIa binding as those bearing naturally occurring oligosaccharide heterogeneities and artificial amino acid mutations, even in the presence of plasma IgG. Robust stable production of completely non-fucosylated therapeutic antibodies in a fixed quality has been achieved by the generation of a unique host cell line, in which the endogenous α-1,6-fucosyltransferase (FUT8) gene is knocked out. Thus, the application of non-fucosylated antibodies is expected to be a promising approach as next-generation therapeutic antibodies with improved efficacy, even when administrated at low doses in humans in vivo. Clinical trials using non-fucosylated antibody therapeutics are underway at present.


Clinical Cancer Research | 2005

Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density.

Rinpei Niwa; Mikiko Sakurada; Yukari Kobayashi; Aya Uehara; Kouji Matsushima; Ryuzo Ueda; Kazuyasu Nakamura; Kenya Shitara

Purpose: Recent studies have revealed that fucose removal from the oligosaccharides of human IgG1 antibodies results in a significant enhancement of antibody-dependent cellular cytotoxicity (ADCC) via improved IgG1 binding to FcγRIIIa. In this report, we investigated the relationship between enhanced ADCC and antigen density on target cells using IgG1 antibodies with reduced fucose. Experimental Design: Using EL4 cell-derived transfectants with differential expression levels of exogenous human CC chemokine receptor 4 or human CD20 as target cells, ADCC of fucose variants of chimeric IgG1 antibodies specific for these antigens were measured. We further investigated IgG1 binding to natural killer (NK) cells and NK cell activation during ADCC induction to elucidate the mechanism by which low-fucose IgG1 induces ADCC upon target cells with low antigen expression. Results: Low-fucose IgG1s showed potent ADCC at low antigen densities at which their corresponding high-fucose counterparts could not induce measurable ADCC. The quantitative analysis revealed that fucose depletion could reduce the antigen amount on target cells required for constant degrees of ADCC induction by 10-fold for CC chemokine receptor 4 and 3-fold for CD20. IgG1 binding to NK cells was increased by ligating IgG1 with clustered antigen, especially for low-fucose IgG1. Up-regulation of an activation marker, CD69, on NK cells, particularly the CD56dim subset, in the presence of both the antibody and target cells was much greater for the low-fucose antibodies. Conclusions: Our data showed that fucose removal from IgG1 could reduce the antigen amount required for ADCC induction via efficient recruitment and activation of NK cells.


Cancer Research | 2004

Growth Inhibition of Human Prostate Cancer Cells in Human Adult Bone Implanted into Nonobese Diabetic/Severe Combined Immunodeficient Mice by a Ligand-Specific Antibody to Human Insulin-Like Growth Factors

Masato Goya; Shin’ichi Miyamoto; Kanji Nagai; Yuji Ohki; Kazuyasu Nakamura; Kenya Shitara; Hiroyuki Maeda; Takafumi Sangai; Keiji Kodama; Yasushi Endoh; Genichiro Ishii; Takahiro Hasebe; Hiroyuki Yonou; Tadashi Hatano; Yoshihide Ogawa; Atsushi Ochiai

Advanced prostate cancer frequently involves the bone that has the largest content of insulin-like growth factors (IGFs). However, the role of bone-derived IGFs in bone metastasis of prostate cancer has not been studied extensively because of the lack of a reliable animal model. Therefore, we investigated whether a novel antibody directed against human IGF-I and IGF-II (KM1468) could inhibit the development of new bone tumors and the progression of established bone tumors in nonobese diabetic/severe combined immunodeficient mice implanted with human adult bone. We first confirmed that KM1468 bound specifically to human IGF-I, human IGF-II, and mouse IGF-II but not to insulin. It also blocked autophosphorylation of the type I IGF receptor induced by the binding of IGFs in human-type I IGF receptor-overexpressing BALB/c 3T3 cells, and it inhibited the IGF-stimulated growth of MDA PCa 2b cells in vitro. Then mice were injected intraperitoneally with KM1468 once weekly for 4 weeks either immediately or 4 weeks after inoculation of MDA PCa 2b cells. KM1468 markedly and dose-dependently suppressed the development of new bone tumors and the progression of established tumor foci, as determined by histomorphometry, and it also decreased serum prostate-specific antigen levels, compared with the control. This is the first report of an IGF ligand-specific inhibitory antibody that suppresses the growth of human prostate cancer cells in human adult bone. These results indicate that the IGF signaling axis is a potential target for prevention and treatment of bone metastases arising from prostate cancer.


Journal of Biological Chemistry | 1998

Mapping of the Sites Involved in Ligand Association and Dissociation at the Extracellular Domain of the Kinase Insert Domain-containing Receptor for Vascular Endothelial Growth Factor

Akeo Shinkai; Mikito Ito; Hideharu Anazawa; Sachiko Yamaguchi; Kenya Shitara; Masabumi Shibuya

The kinase insert domain-containing receptor (KDR) for vascular endothelial growth factor (VEGF) has been shown to be involved in vasculogenesis and angiogenesis. This receptor is characterized by seven immunoglobulin (Ig)-like domains within its extracellular region. To identify the domains involved in VEGF binding, we constructed various deletion mutants of the extracellular region fused with the crystallizable fragment portion of an IgG and then examined the binding affinity with VEGF by means of the BIAcore biosensor assay. Deletion of the COOH-terminal two or three Ig-like domains out of a total of seven affected ligand dissociation rather than association. Further deletion of the fourth domain caused a drastic decrease in the association rate. Binding ability was abolished completely with removal of the third domain. The mutant KDR proteins lacking the NH2-terminal Ig-like domain exhibited a slightly higher association rate compared with those of the mutants having this domain. Deletion of the first two NH2-terminal Ig-like domains caused a drastic reduction in the association rate, but affinity to VEGF was retained. These results suggest that the third Ig-like domain is critical for ligand binding, the second and fourth domains are important for ligand association, and the fifth and sixth domains are required for retention of the ligand bound to the receptor molecule. The first Ig-like domain may regulate the ligand binding.

Collaboration


Dive into the Kenya Shitara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge