Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rinpei Niwa is active.

Publication


Featured researches published by Rinpei Niwa.


Cancer Research | 2004

Defucosylated Chimeric Anti-CC Chemokine Receptor 4 IgG1 with Enhanced Antibody-Dependent Cellular Cytotoxicity Shows Potent Therapeutic Activity to T-Cell Leukemia and Lymphoma

Rinpei Niwa; Emi Shoji-Hosaka; Mikiko Sakurada; Toyohide Shinkawa; Kazuhisa Uchida; Kazuyasu Nakamura; Kouji Matsushima; Ryuzo Ueda; Nobuo Hanai; Kenya Shitara

Human IgG1 antibodies with low fucose contents in their asparagine-linked oligosaccharides have been shown recently to exhibit potent antibody-dependent cellular cytotoxicity (ADCC) in vitro. To additionally investigate the efficacy of the human IgG1 with enhanced ADCC, we generated the defucosylated chimeric anti-CC chemokine receptor 4 (CCR4) IgG1 antibody KM2760. KM2760 exhibited much higher ADCC using human peripheral blood mononuclear cells (PBMCs) as effector cells compared with the highly fucosylated, but otherwise identical IgG1, KM3060. In addition, KM2760 also exhibited potent ADCC in the presence of lower concentrations of human PBMCs than KM3060. Because CCR4 is a selective marker of T-cell leukemia/lymphoma, the effectiveness of KM2760 for T-cell malignancy was evaluated in several mouse models. First, to compare the antitumor activity of KM2760 and KM3060, we constructed a human PBMC-engrafted mouse model to determine ADCC efficacy with human effector cells. In this model, KM2760 showed significantly higher antitumor efficacy than KM3060, indicating that KM2760 retains its high potency in vivo. Second, KM2760 suppressed tumor growth in both syngeneic and xenograft mouse models in which human PBMCs were not engrafted. Although murine effector cells exhibited marginal ADCC mediated by KM2760 and KM3060, KM2760 unexpectedly showed higher efficacy than KM3060 in a syngeneic mouse model, suggesting that KM2760 functions in murine effector system in vivo via an unknown mechanism that differs from that in human. These results indicate that defucosylated antibodies with enhanced ADCC as well as potent antitumor activity in vivo are promising candidates for the novel antibody-based therapy.


Clinical Cancer Research | 2004

Enhancement of the Antibody-Dependent Cellular Cytotoxicity of Low-Fucose IgG1 Is Independent of FcγRIIIa Functional Polymorphism

Rinpei Niwa; Shigeki Hatanaka; Emi Shoji-Hosaka; Mikiko Sakurada; Yukari Kobayashi; Aya Uehara; Haruhiko Yokoi; Kazuyasu Nakamura; Kenya Shitara

Purpose: The most common polymorphic variant of Fcγ receptor type IIIa (FcγRIIIa), FcγRIIIa-158F, has been associated with inferior clinical responses to anti-CD20 chimeric IgG1 rituximab compared with FcγRIIIa-158V. As we previously found that removal of fucose residues from the oligosaccharides of human IgG1 results in enhanced antibody-dependent cellular cytotoxicity, we compared the effects of the FcγRIIIa gene (FCGR3A) polymorphism on normal and low-fucose versions of rituximab on antibody-dependent cellular cytotoxicity. Experimental Design: The polymorphism at position 158 of FcγRIIIa was determined for the peripheral blood mononuclear cells (PBMCs) of 20 healthy donors. The PBMCs were then used as effector cells to compare the antibody-dependent cellular cytotoxicity of rituximab and a low-fucose version, KM3065. The contributions of the different cell types within the PBMC to antibody-dependent cellular cytotoxicity were examined. Results: We found KM3065-mediated antibody-dependent cellular cytotoxicity was increased 10 to 100-fold compared with rituximab for each of the 20 donors. In contrast to rituximab, KM3065 antibody-dependent cellular cytotoxicity enhancement was similar for both FCGR3A alleles and thus independent of genotype. In addition, antibody-dependent cellular cytotoxicity of both KM3065 and rituximab requires natural killer cells but not monocytes nor polymorphonuclear cells. The antibody-dependent cellular cytotoxicity (ADCC) of each of the 20 donors correlated with the natural killer cell numbers present in the PBMCs. Importantly, using KM3065, the ADCC mediated by effector cells bearing the lower affinity variant FcγRIIIa-158F was significantly increased compared with rituximab-mediated ADCC using effector cells bearing the higher affinity FcγRIIIa-158V receptors. Conclusions: The use of low-fucose antibodies might improve the therapeutic effects of anti-CD20 therapy for all patients independent of FcγRIIIa phenotype beyond that currently seen with even the most responsive patients.


Cancer Research | 2008

Engineered antibodies of IgG1/IgG3 mixed isotype with enhanced cytotoxic activities.

Akito Natsume; Mika In; Hiroyuki Takamura; Tomoaki Nakagawa; Yukiko Shimizu; Kazuko Kitajima; Masako Wakitani; So Ohta; Mitsuo Satoh; Kenya Shitara; Rinpei Niwa

Enhancement of multiple effector functions of an antibody may be a promising approach for antibody therapy. We have previously reported that fucose removal from Fc-linked oligosaccharides greatly enhances antibody-dependent cellular cytotoxicity (ADCC) of therapeutic antibodies. Here, we report a unique approach to enhance complement-dependent cytotoxicity (CDC), another important effector function of antitumor antibodies, by using engineered constant region of human IgG1/IgG3 chimeric isotypes. We systematically shuffled constant domains of IgG1 and IgG3 to generate a comprehensive set of mixed chimeric isotypes of anti-CD20 antibodies. Among these, the variant 1133, consisting of the CH1 and the hinge each from IgG1 and the Fc from IgG3, was unexpectedly found to exhibit markedly enhanced CDC that exceeded wild-type levels. However, it lacked protein A-binding capacity, an important feature for the industrial production. To eliminate this deficiency, a portion in COOH-terminal CH3 domain of 1133 was substituted with IgG1, resulting in full recovery of protein A binding without compromising the enhanced CDC and ADCC activities. The CDC-enhancing effect using a chimeric isotype was also shown in CD52 antigen/antibody system. The ADCC activity of the variants was also maximized by the absence of fucose from its carbohydrate structure, a phenomenon that has previously been observed for wild-type antibodies. Enhanced cytotoxicity of a variant was confirmed in a cynomolgus monkey model. These findings suggest that the variant antibodies with IgG1/IgG3 chimeric constant regions and nonfucosylated oligosaccharides that possess dual-enhanced cytotoxic functions may be an improvement for the next generation of therapeutic antitumor antibodies.


Clinical Cancer Research | 2005

Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density.

Rinpei Niwa; Mikiko Sakurada; Yukari Kobayashi; Aya Uehara; Kouji Matsushima; Ryuzo Ueda; Kazuyasu Nakamura; Kenya Shitara

Purpose: Recent studies have revealed that fucose removal from the oligosaccharides of human IgG1 antibodies results in a significant enhancement of antibody-dependent cellular cytotoxicity (ADCC) via improved IgG1 binding to FcγRIIIa. In this report, we investigated the relationship between enhanced ADCC and antigen density on target cells using IgG1 antibodies with reduced fucose. Experimental Design: Using EL4 cell-derived transfectants with differential expression levels of exogenous human CC chemokine receptor 4 or human CD20 as target cells, ADCC of fucose variants of chimeric IgG1 antibodies specific for these antigens were measured. We further investigated IgG1 binding to natural killer (NK) cells and NK cell activation during ADCC induction to elucidate the mechanism by which low-fucose IgG1 induces ADCC upon target cells with low antigen expression. Results: Low-fucose IgG1s showed potent ADCC at low antigen densities at which their corresponding high-fucose counterparts could not induce measurable ADCC. The quantitative analysis revealed that fucose depletion could reduce the antigen amount on target cells required for constant degrees of ADCC induction by 10-fold for CC chemokine receptor 4 and 3-fold for CD20. IgG1 binding to NK cells was increased by ligating IgG1 with clustered antigen, especially for low-fucose IgG1. Up-regulation of an activation marker, CD69, on NK cells, particularly the CD56dim subset, in the presence of both the antibody and target cells was much greater for the low-fucose antibodies. Conclusions: Our data showed that fucose removal from IgG1 could reduce the antigen amount required for ADCC induction via efficient recruitment and activation of NK cells.


Cancer Science | 2009

Engineered therapeutic antibodies with improved effector functions

Tsuguo Kubota; Rinpei Niwa; Mitsuo Satoh; Shiro Akinaga; Kenya Shitara; Nobuo Hanai

In the past decade, more than 20 therapeutic antibodies have been approved for clinical use and many others are now at the clinical and preclinical stage of development. Fragment crystallizable (Fc)‐dependent antibody functions, such as antibody‐dependent cell‐mediated cytotoxicity (ADCC), complement‐dependent cytotoxicity (CDC), and a long half‐life, have been suggested as important clinical mechanisms of therapeutic antibodies. These functions are primarily triggered through direct interaction of the Fc domain with its corresponding receptors: FcγRIIIa for ADCC, C1q for CDC, and neonatal Fc receptor for prolongation of the clearance rate. However, current antibody therapy still faces the critical issues of insufficient efficacy and the high cost of the therapeutic agents. A possible solution to these issues could be to engineer antibody molecules to enhance their antitumor activity, leading to improved therapeutic outcomes and reduced doses. Here, we review advanced Fc engineering approaches for the enhancement of effector functions, some of which are now ready for evaluation of their effectiveness in clinical trials. (Cancer Sci 2009; 100: 1566–1572)


Drug Design Development and Therapy | 2008

Improving effector functions of antibodies for cancer treatment: Enhancing ADCC and CDC

Akito Natsume; Rinpei Niwa; Mitsuo Satoh

As platforms for therapeutic agents, monoclonal antibodies (MAbs) have already been approved, and several MAbs have demonstrated clinical effectiveness in a variety of malignancies. However, several issues have also been emerging in antibody therapy, such as high cost and insufficient drug action. Recently, to improve MAb activity in humans, effector functions have been subjects of focus, especially antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Extensive efforts have been made to enhance these effector functions of MAbs, and successful approaches have been reported by us and others, wherein the binding activity of MAbs to FcγRIIIa or C1q is increased by introducing amino acid mutations into heavy chain constant regions or through glyco-modification of Fc-linked oligosaccharides. In addition, one of the next approaches to optimizing therapeutic antibodies would be to combine multiple enhancing modifications into a single antibody platform to overcome the diverse mechanisms of clinical resistance of tumor cells. For this aim, we have recently developed a successful combination composed of ADCC-enhancing modification by the fucose depletion from Fc-linked oligosaccharides and CDC-enhancing modification by IgG1 and IgG3 isotype shuffling in heavy chains, which could be of great value for the development of third-generation antibody therapeutics.


Clinical Cancer Research | 2007

A Nonfucosylated Anti-HER2 Antibody Augments Antibody-Dependent Cellular Cytotoxicity in Breast Cancer Patients

Eiji Suzuki; Rinpei Niwa; Shigehira Saji; Mariko Muta; Makiko Hirose; Shigeru Iida; Yukimasa Shiotsu; Mitsuo Satoh; Kenya Shitara; Masahide Kondo; Masakazu Toi

Purpose: Removal of fucose residues from the oligosaccharides of human antibody is a powerful approach to enhance antibody-dependent cellular cytotoxicity (ADCC), a potential important antitumor mechanism of therapeutic antibodies. To provide clinically relevant evidence of this mechanism, we investigated ADCC of a fucose-negative version of trastuzumab [anti–human epidermal growth factor receptor 2 (HER2) humanized antibody] using peripheral blood mononuclear cells (PBMC) from breast cancer patients as effector cells. Experimental Design: Thirty volunteers, including 20 breast cancer patients and 10 normal healthy control donors, were recruited randomly, and aliquots of peripheral blood were collected. ADCC of commercial trastuzumab (fucosylated) and its fucose-negative version were measured using PBMCs drawn from the volunteers as effector cells and two breast cancer cell lines with different HER2 expression levels as target cells. Relationships between cytotoxicity and characteristics of the patients, such as content of natural killer cells in PBMCs, type of therapy, FCGR3A genotypes, etc. were also analyzed. Results: ADCC was significantly enhanced with the fucose-negative antibody compared with the fucose-positive antibody using PBMCs from either normal donors or breast cancer patients. Enhancement of ADCC was observed irrespective of the various clinical backgrounds of the patients, even in the chemotherapy cohort that presented with a reduced number of natural killer cells and weaker ADCC. Conclusions: This preliminary study suggests that the use of fucose-negative antibodies may improve the therapeutic effects of anti-HER2 therapy for patients independent of clinical backgrounds.


Cytotechnology | 2007

Non-fucosylated therapeutic antibodies: the next generation of therapeutic antibodies

Katsuhiro Mori; Shigeru Iida; Naoko Yamane-Ohnuki; Yutaka Kanda; Reiko Kuni-Kamochi; Ryosuke Nakano; Harue Imai-Nishiya; Akira Okazaki; Toyohide Shinkawa; Akihito Natsume; Rinpei Niwa; Kenya Shitara; Mitsuo Satoh

Therapeutic antibody IgG1 has two N-linked oligosaccharide chains bound to the Fc region. The oligosaccharides are of the complex biantennary type, composed of a trimannosyl core structure with the presence or absence of core fucose, bisecting N-acetylglucosamine (GlcNAc), galactose, and terminal sialic acid, which gives rise to structural heterogeneity. Both human serum IgG and therapeutic antibodies are well known to be heavily fucosylated. Recently, antibody-dependent cellular cytotoxicity (ADCC), a lytic attack on antibody-targeted cells, has been found to be one of the critical effector functions responsible for the clinical efficacy of therapeutic antibodies such as anti-CD20 IgG1 rituximab (Rituxan®) and anti-Her2/neu IgG1 trastuzumab (Herceptin®). ADCC is triggered upon the binding of lymphocyte receptors (FcγRs) to the antibody Fc region. The activity is dependent on the amount of fucose attached to the innermost GlcNAc of N-linked Fc oligosaccharide via an α-1,6-linkage, and is dramatically enhanced by a reduction in fucose. Non-fucosylated therapeutic antibodies show more potent efficacy than their fucosylated counterparts both in vitro and in vivo, and are not likely to be immunogenic because their carbohydrate structures are a normal component of natural human serum IgG. Thus, the application of non-fucosylated antibodies is expected to be a powerful and elegant approach to the design of the next generation therapeutic antibodies with improved efficacy. In this review, we discuss the importance of the oligosaccharides attached to the Fc region of therapeutic antibodies, especially regarding the inhibitory effect of fucosylated therapeutic antibodies on the efficacy of non-fucosylated counterparts in one medical agent. The impact of completely non-fucosylated therapeutic antibodies on therapeutic fields will be also discussed.


BioDrugs | 2011

Optimizing Therapeutic Antibody Function

Etsuji Kaneko; Rinpei Niwa

Since the establishment of monoclonal antibody production using hybridoma technology in the mid-1970s, there has been expanding progress and continuous technological improvement in the development of therapeutic antibodies. The initial technological breakthroughs involved reduction of immunogenicity and thus enabled repeated administration. The establishment of chimeric, humanized, and fully human antibodies has led to the great success of several ‘second-generation’ therapeutic antibodies, such as rituximab, trastuzumab, cetuximab, and bevacizumab. However, there still exists an urgent demand for improvement in the efficacy of the current antibody therapeutics, which is not yet fully satisfactory for patients. Based on the current understanding of the clinical mechanisms of several therapeutic antibodies, many now believe that Fc-mediated functions (e.g. antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and neonatal Fc receptor [FcRn]-mediated storage) will improve the clinical outcomes of therapeutic antibodies. The present review focuses on the recent progress in the development of ‘Fc engineering,’ which dramatically improves (and sometimes silences) Fc-mediated functions. These achievements can be classified into two technological approaches: (i) introducing amino acid mutations and (ii) modifying Fc-linked oligosaccharide structures. The effectiveness of multiple third-generation therapeutic antibodies armed with various engineered Fcs is now ready to be tested in clinical trials.


Cancer Science | 2009

Engineered anti‐CD20 antibodies with enhanced complement‐activating capacity mediate potent anti‐lymphoma activity

Akito Natsume; Yukiko Shimizu-Yokoyama; Mitsuo Satoh; Kenya Shitara; Rinpei Niwa

One of the major issues in current antibody therapy is insufficient efficacy. Various biological factors relating to the host’s immune system or tumor cells have been suggested to reduce the efficacy of anti‐CD20 therapy in B‐cell malignancies. In this study, we characterized the in vitro anti‐lymphoma activity of anti‐CD20 antibodies having a novel engineered heavy chain with enhanced complement‐dependent cytotoxicity (CDC). Anti‐CD20 antibodies having a variant heavy constant region of mixed IgG1/IgG3 isotype, which have previously been found to enhance CDC, were investigated for their in vitro CDC against lymphoma cells and whole blood B‐cell depletion activity. Use of the variant constant region greatly increased the CDC of an anti‐CD20 antibody having variable regions identical to those of rituximab to the level shown by an IgG1 antibody of ofatumumab. Although the whole blood assay showed different cytotoxicity patterns among individual blood donors, the CDC‐enhancing variant of rituximab showed higher activity than the parent IgG1 and consistently showed maximized activity when further combined with antibody‐dependent cellular cytotoxicity (ADCC)‐enhancing modification by fucose removal from Fc‐linked oligosaccharides. In addition, the rituximab variant showed potent CDC against transfectant cells with lower CD20 expression and chronic lymphocytic leukemia–derived cell lines with higher complement regulatory proteins. These findings suggest that CDC enhancement, both alone and in combination with ADCC enhancement, increases the anti‐lymphoma activity of anti‐CD20 antibodies irrespective of individual differences in effector functions, and renders current anti‐CD20 therapy capable of overcoming the potential resistance mechanisms. (Cancer Sci 2009; 100: 2411–2418)

Collaboration


Dive into the Rinpei Niwa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge