Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keqing Zhang is active.

Publication


Featured researches published by Keqing Zhang.


PLOS ONE | 2012

AAV-mediated cone rescue in a naturally occurring mouse model of CNGA3-achromatopsia.

Ji-jing Pang; Wen-Tao Deng; Xufeng Dai; Bo Lei; Drew Everhart; Yumiko Umino; Jie Li; Keqing Zhang; Song Mao; Sanford L. Boye; Li Liu; Vince A. Chiodo; Xuan Liu; Wei Shi; Ye Tao; Bo Chang; William W. Hauswirth

Achromatopsia is a rare autosomal recessive disorder which shows color blindness, severely impaired visual acuity, and extreme sensitivity to bright light. Mutations in the alpha subunits of the cone cyclic nucleotide-gated channels (CNGA3) are responsible for about 1/4 of achromatopsia in the U.S. and Europe. Here, we test whether gene replacement therapy using an AAV5 vector could restore cone-mediated function and arrest cone degeneration in the cpfl5 mouse, a naturally occurring mouse model of achromatopsia with a CNGA3 mutation. We show that gene therapy leads to significant rescue of cone-mediated ERGs, normal visual acuities and contrast sensitivities. Normal expression and outer segment localization of both M- and S-opsins were maintained in treated retinas. The therapeutic effect of treatment lasted for at least 5 months post-injection. This study is the first demonstration of substantial, relatively long-term restoration of cone-mediated light responsiveness and visual behavior in a naturally occurring mouse model of CNGA3 achromatopsia. The results provide the foundation for development of an AAV5-based gene therapy trial for human CNGA3 achromatopsia.


Molecular Therapy | 2013

Microdystrophin Ameliorates Muscular Dystrophy in the Canine Model of Duchenne Muscular Dystrophy

Jin-Hong Shin; Xiufang Pan; Chady H. Hakim; Hsiao T. Yang; Yongping Yue; Keqing Zhang; Ronald L. Terjung; Dongsheng Duan

Dystrophin deficiency results in lethal Duchenne muscular dystrophy (DMD). Substituting missing dystrophin with abbreviated microdystrophin has dramatically alleviated disease in mouse DMD models. Unfortunately, translation of microdystrophin therapy has been unsuccessful in dystrophic dogs, the only large mammalian model. Approximately 70% of the dystrophin-coding sequence is removed in microdystrophin. Intriguingly, loss of ≥50% dystrophin frequently results in severe disease in patients. To test whether the small gene size constitutes a fundamental design error for large mammalian muscle, we performed a comprehensive study using 22 dogs (8 normal and 14 dystrophic). We delivered the ΔR2-15/ΔR18-19/ΔR20-23/ΔC microdystrophin gene to eight extensor carpi ulnaris (ECU) muscles in six dystrophic dogs using Y713F tyrosine mutant adeno-associated virus (AAV)-9 (2.6 × 10(13) viral genome (vg) particles/muscle). Robust expression was observed 2 months later despite T-cell infiltration. Major components of the dystrophin-associated glycoprotein complex (DGC) were restored by microdystrophin. Treated muscle showed less inflammation, fibrosis, and calcification. Importantly, therapy significantly preserved muscle force under the stress of repeated cycles of eccentric contraction. Our results have established the proof-of-concept for microdystrophin therapy in dystrophic muscles of large mammals and set the stage for clinical trial in human patients.


Human Molecular Genetics | 2013

Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy

Yadong Zhang; Yongping Yue; Liang Li; Chady H. Hakim; Keqing Zhang; Gail D. Thomas; Dongsheng Duan

Neuronal nitric oxide synthase (nNOS) membrane delocalization contributes to the pathogenesis of Duchenne muscular dystrophy (DMD) by promoting functional muscle ischemia and exacerbating muscle injury during exercise. We have previously shown that supra-physiological expression of nNOS-binding mini-dystrophin restores normal blood flow regulation and prevents functional ischemia in transgenic mdx mice, a DMD model. A critical next issue is whether systemic dual adeno-associated virus (AAV) gene therapy can restore nNOS-binding mini-dystrophin expression and mitigate muscle activity-related functional ischemia and injury. Here, we performed systemic gene transfer in mdx and mdx4cv mice using a pair of dual AAV vectors that expressed a 6 kb nNOS-binding mini-dystrophin gene. Vectors were packaged in tyrosine mutant AAV-9 and co-injected (5 × 10(12) viral genome particles/vector/mouse) via the tail vein to 1-month-old dystrophin-null mice. Four months later, we observed 30-50% mini-dystrophin positive myofibers in limb muscles. Treatment ameliorated histopathology, increased muscle force and protected against eccentric contraction-induced injury. Importantly, dual AAV therapy successfully prevented chronic exercise-induced muscle force drop. Doppler hemodynamic assay further showed that therapy attenuated adrenergic vasoconstriction in contracting muscle. Our results suggest that partial transduction can still ameliorate nNOS delocalization-associated functional deficiency. Further evaluation of nNOS binding mini-dystrophin dual AAV vectors is warranted in dystrophic dogs and eventually in human patients.


Human Molecular Genetics | 2015

Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus

Yongping Yue; Xiufang Pan; Chady H. Hakim; Kasun Kodippili; Keqing Zhang; Jin-Hong Shin; Hsiao T. Yang; Thomas McDonald; Dongsheng Duan

The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future.


Advances in Experimental Medicine and Biology | 2010

Achromatopsia as a Potential Candidate for Gene Therapy

Ji-jing Pang; John J. Alexander; Bo Lei; Wen-Tao Deng; Keqing Zhang; Qiuhong Li; Bo Chang; William W. Hauswirth

Achromatopsia is an autosomal recessive retinal disease involving loss of cone function that afflicts approximately 1 in 30,000 individuals. Patients with achromatopsia usually have visual acuities lower than 20/200 because of the central vision loss, photophobia, complete color blindness and reduced cone-mediated electroretinographic (ERG) amplitudes. Mutations in three genes have been found to be the primary causes of achromatopsia, including CNGB3 (beta subunit of the cone cyclic nucleotide-gated cation channel), CNGA3 (alpha subunit of the cone cyclic nucleotide-gated cation channel), and GNAT2 (cone specific alpha subunit of transducin). Naturally occurring mouse models with mutations in Cnga3 (cpfl5 mice) and Gnat2 (cpfl3 mice) were discovered at The Jackson Laboratory. A natural occurring canine model with CNGB3 mutations has also been found. These animal models have many of the central phenotypic features of the corresponding human diseases. Using adeno-associated virus (AAV)-mediated gene therapy, we and others show that cone function can be restored in all three models. These data suggest that human achromatopsia may be a good candidate for corrective gene therapy.


Muscle & Nerve | 2011

Genotyping mdx, mdx3cv, and mdx4cv mice by primer competition polymerase chain reaction

Jin-Hong Shin; Chady H. Hakim; Keqing Zhang; Dongsheng Duan

mdx, mdx3cv, and mdx4cv mice are among the most commonly used models for the study of Duchenne muscular dystrophy. Their disease is caused by point mutations in the dystrophin gene. Despite widespread use of these models, genotyping has not always been straightforward. Current methods require multiple polymerase chain reactions (PCRs), post‐PCR manipulations, and/or special equipment/reagents. Herein we report a simple, robust PCR genotyping method based on primer competition. This approach could also be applied in genotyping other point‐mutation models. Muscle Nerve , 2010


Biomedical Optics Express | 2014

Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography

Yuanbo Wang; Keqing Zhang; Nalinda B. Wasala; Xuan Yao; Dongsheng Duan; G. Yao

Myofiber organization in cardiac muscle plays an important role in achieving normal mechanical and electrical heart functions. An imaging tool that can reveal microstructural details of myofiber organization is valuable for both basic research and clinical applications. A high-resolution optical polarization tractography (OPT) was recently developed based on Jones matrix optical coherence tomography (JMOCT). In this study, we validated the accuracy of using OPT for measuring depth-resolved fiber orientation in fresh heart samples by comparing directly with histology images. Systematic image processing algorithms were developed to register OPT with histology images. The pixel-wise differences between the two tractographic results were analyzed in details. The results indicate that OPT can accurately image depth-resolved fiber orientation in fresh heart tissues and reveal microstructural details at the histological level.


Molecular therapy. Methods & clinical development | 2014

Systemic gene transfer reveals distinctive muscle transduction profile of tyrosine mutant AAV-1, -6, and -9 in neonatal dogs

Chady H. Hakim; Yongping Yue; Jin-Hong Shin; Regina R Williams; Keqing Zhang; Bruce F. Smith; Dongsheng Duan

The muscular dystrophies are a group of devastating genetic disorders that affect both skeletal and cardiac muscle. An effective gene therapy for these diseases requires bodywide muscle delivery. Tyrosine mutant adeno-associated virus (AAV) has been considered as a class of highly potent gene transfer vectors. Here, we tested the hypothesis that systemic delivery of tyrosine mutant AAV can result in bodywide muscle transduction in newborn dogs. Three tyrosine mutant AAV vectors (Y445F/Y731F AAV-1, Y445F AAV-6, and Y731F AAV-9) were evaluated. These vectors expressed the alkaline phosphatase reporter gene under transcriptional regulation of either the muscle-specific Spc5-12 promoter or the ubiquitous Rous sarcoma virus promoter. Robust skeletal and cardiac muscle transduction was achieved with Y445F/Y731F AAV-1. However, Y731F AAV-9 only transduced skeletal muscle. Surprisingly, Y445F AAV-6 resulted in minimal muscle transduction. Serological study suggests that the preexisting neutralization antibody may underlie the limited transduction of Y445F AAV-6. In summary, we have identified Y445F/Y731F AAV-1 as a potentially excellent systemic gene transfer vehicle to target both skeletal muscle and the heart in neonatal puppies. Our findings have important implications in exploring systemic neonatal gene therapy in canine models of muscular dystrophy.


Journal of Biophotonics | 2017

High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography

Leila Azinfar; Mohammadreza Ravanfar; Yuanbo Wang; Keqing Zhang; Dongsheng Duan; Gang Yao

The biomechanical properties of artery are primarily determined by the fibrous structures in the vessel wall. Many vascular diseases are associated with alternations in the orientation and alignment of the fibrous structure in the arterial wall. Knowledge on the structural features of the artery wall is crucial to our understanding of the biology of vascular diseases and the development of novel therapies. Optical coherence tomography (OCT) and polarization-sensitive OCT have shown great promise in imaging blood vessels due to their high resolution, fast acquisition, good imaging depth, and large field of view. However, the feasibility of using OCT based methods for imaging fiber orientation and distribution in the arterial wall has not been investigated. Here we show that the optical polarization tractography (OPT), a technology developed from Jones matrix OCT, can reveal the fiber orientation and alignment in the bovine common carotid artery. The fiber orientation and alignment data obtained in OPT provided a robust contrast marker to clearly resolve the intima and media boundary of the carotid artery wall. Optical polarization tractography can visualize fiber orientation and alignment in carotid artery.


Human Gene Therapy Methods | 2015

AAV-8 Is More Efficient than AAV-9 in Transducing Neonatal Dog Heart

Xiufang Pan; Yongping Yue; Keqing Zhang; Chady H. Hakim; Kasun Kodippili; Thomas McDonald; Dongsheng Duan

Adeno-associated virus serotype-8 and 9 (AAV-8 and 9) are the leading candidate vectors to test bodywide neonatal muscle gene therapy in large mammals. We have previously shown that systemic injection of 2-2.5×10(14) viral genome (vg) particles/kg of AAV-9 resulted in widespread skeletal muscle gene transfer in newborn dogs. However, nominal transduction was observed in the heart. In contrast, robust expression was achieved in both skeletal muscle and heart in neonatal dogs with 7.14-9.06×10(14) vg particles/kg of AAV-8. To determine whether superior cardiac transduction of AAV-8 is because of the higher vector dose, we delivered 6.14×10(14) and 9.65×10(14) vg particles/kg of AAV-9 to newborn puppies via the jugular vein. Transduction was examined 2.5 months later. Consistent with our previous reports, we observed robust bodywide transduction in skeletal muscle. However, increased AAV dose only moderately improved heart transduction. It never reached the level achieved by AAV-8. Our results suggest that differential cardiac transduction by AAV-8 and AAV-9 is likely because of the intrinsic property of the viral capsid rather than the vector dose.

Collaboration


Dive into the Keqing Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Lei

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar

Gang Yao

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Chang

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiufang Pan

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

Yuanbo Wang

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge