Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiufang Pan is active.

Publication


Featured researches published by Xiufang Pan.


Science | 2016

In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.

Christopher E. Nelson; Chady H. Hakim; David G. Ousterout; Pratiksha I. Thakore; Eirik A. Moreb; Ruth M. Castellanos Rivera; Sarina Madhavan; Xiufang Pan; F. Ann Ran; Winston X. Yan; Aravind Asokan; Feng Zhang; Dongsheng Duan; Charles A. Gersbach

Editing can help build stronger muscles Much of the controversy surrounding the gene-editing technology called CRISPR/Cas9 centers on the ethics of germline editing of human embryos to correct disease-causing mutations. For certain disorders such as muscular dystrophy, it may be possible to achieve therapeutic benefit by editing the faulty gene in somatic cells. In proof-of-concept studies, Long et al., Nelson et al., and Tabebordbar et al. used adeno-associated virus-9 to deliver the CRISPR/Cas9 gene-editing system to young mice with a mutation in the gene coding for dystrophin, a muscle protein deficient in patients with Duchenne muscular dystrophy. Gene editing partially restored dystrophin protein expression in skeletal and cardiac muscle and improved skeletal muscle function. Science, this issue p. 400, p. 403, p. 407 Gene editing via CRISPR-Cas9 restores dystrophin protein and improves muscle function in mouse models of muscular dystrophy. Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9–based genome editing as a potential therapy to treat DMD.


Molecular Therapy | 2013

Microdystrophin Ameliorates Muscular Dystrophy in the Canine Model of Duchenne Muscular Dystrophy

Jin-Hong Shin; Xiufang Pan; Chady H. Hakim; Hsiao T. Yang; Yongping Yue; Keqing Zhang; Ronald L. Terjung; Dongsheng Duan

Dystrophin deficiency results in lethal Duchenne muscular dystrophy (DMD). Substituting missing dystrophin with abbreviated microdystrophin has dramatically alleviated disease in mouse DMD models. Unfortunately, translation of microdystrophin therapy has been unsuccessful in dystrophic dogs, the only large mammalian model. Approximately 70% of the dystrophin-coding sequence is removed in microdystrophin. Intriguingly, loss of ≥50% dystrophin frequently results in severe disease in patients. To test whether the small gene size constitutes a fundamental design error for large mammalian muscle, we performed a comprehensive study using 22 dogs (8 normal and 14 dystrophic). We delivered the ΔR2-15/ΔR18-19/ΔR20-23/ΔC microdystrophin gene to eight extensor carpi ulnaris (ECU) muscles in six dystrophic dogs using Y713F tyrosine mutant adeno-associated virus (AAV)-9 (2.6 × 10(13) viral genome (vg) particles/muscle). Robust expression was observed 2 months later despite T-cell infiltration. Major components of the dystrophin-associated glycoprotein complex (DGC) were restored by microdystrophin. Treated muscle showed less inflammation, fibrosis, and calcification. Importantly, therapy significantly preserved muscle force under the stress of repeated cycles of eccentric contraction. Our results have established the proof-of-concept for microdystrophin therapy in dystrophic muscles of large mammals and set the stage for clinical trial in human patients.


Human Molecular Genetics | 2015

Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus

Yongping Yue; Xiufang Pan; Chady H. Hakim; Kasun Kodippili; Keqing Zhang; Jin-Hong Shin; Hsiao T. Yang; Thomas McDonald; Dongsheng Duan

The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future.


Human Gene Therapy | 2013

Long-term robust myocardial transduction of the dog heart from a peripheral vein by adeno-associated virus serotype-8.

Xiufang Pan; Yongping Yue; Keqing Zhang; William Lostal; Jin-Hong Shin; Dongsheng Duan

Molecular intervention using noninvasive myocardial gene transfer holds great promise for treating heart diseases. Robust cardiac transduction from peripheral vein injection has been achieved in rodents using adeno-associated virus (AAV) serotype-9 (AAV-9). However, a similar approach has failed to transduce the heart in dogs, a commonly used large animal model for heart diseases. To develop an effective noninvasive method to deliver exogenous genes to the dog heart, we employed an AAV-8 vector that expresses human placental alkaline phosphatase reporter gene under the transcriptional regulation of the Rous sarcoma virus promoter. Vectors were delivered to three neonatal dogs at the doses of 1.35×10(14), 7.14×10(14), and 9.06×10(14) viral genome particles/kg body weight via the jugular vein. Transduction efficiency and overall safety were evaluated at 1.5, 2.5, and 12 months postinjection. AAV delivery was well tolerated and dog growth was normal. Blood chemistry and internal organ histology were unremarkable. Widespread skeletal muscle transduction was observed in all dogs without T-cell infiltration. Encouragingly, whole heart myocardial transduction was achieved in two dogs that received higher doses and cardiac expression lasted for at least 1 year. In summary, peripheral vein AAV-8 injection may represent a simple heart gene transfer method in large mammals. Further optimization of this gene delivery strategy may open the door for a readily applicable gene therapy method to treat many heart diseases.


PLOS ONE | 2012

Dystrophin deficiency compromises force production of the extensor carpi ulnaris muscle in the canine model of Duchenne muscular dystrophy.

Hsiao T. Yang; Jin-Hong Shin; Chady H. Hakim; Xiufang Pan; Ronald L. Terjung; Dongsheng Duan

Loss of muscle force is a salient feature of Duchenne muscular dystrophy (DMD), a fatal disease caused by dystrophin deficiency. Assessment of force production from a single intact muscle has been considered as the gold standard for studying physiological consequences in murine models of DMD. Unfortunately, equivalent assays have not been established in dystrophic dogs. To fill the gap, we developed a novel in situ protocol to measure force generated by the extensor carpi ulnaris (ECU) muscle of a dog. We also determined the muscle length to fiber length ratio and the pennation angle of the ECU muscle. Muscle pathology and contractility were compared between normal and affected dogs. Absence of dystrophin resulted in marked histological damage in the ECU muscle of affected dogs. Central nucleation was significantly increased and myofiber size distribution was altered in the dystrophic ECU muscle. Muscle weight and physiological cross sectional area (PCSA) showed a trend of reduction in affected dogs although the difference did not reach statistical significance. Force measurement revealed a significant decrease of absolute force, and the PCSA or muscle weight normalized specific forces. To further characterize the physiological defect in affected dog muscle, we conducted eccentric contraction. Dystrophin-null dogs showed a significantly greater force loss following eccentric contraction damage. To our knowledge, this is the first convincing demonstration of force deficit in a single intact muscle in the canine DMD model. The method described here will be of great value to study physiological outcomes following innovative gene and/or cell therapies.


Human Gene Therapy Methods | 2015

AAV-8 Is More Efficient than AAV-9 in Transducing Neonatal Dog Heart

Xiufang Pan; Yongping Yue; Keqing Zhang; Chady H. Hakim; Kasun Kodippili; Thomas McDonald; Dongsheng Duan

Adeno-associated virus serotype-8 and 9 (AAV-8 and 9) are the leading candidate vectors to test bodywide neonatal muscle gene therapy in large mammals. We have previously shown that systemic injection of 2-2.5×10(14) viral genome (vg) particles/kg of AAV-9 resulted in widespread skeletal muscle gene transfer in newborn dogs. However, nominal transduction was observed in the heart. In contrast, robust expression was achieved in both skeletal muscle and heart in neonatal dogs with 7.14-9.06×10(14) vg particles/kg of AAV-8. To determine whether superior cardiac transduction of AAV-8 is because of the higher vector dose, we delivered 6.14×10(14) and 9.65×10(14) vg particles/kg of AAV-9 to newborn puppies via the jugular vein. Transduction was examined 2.5 months later. Consistent with our previous reports, we observed robust bodywide transduction in skeletal muscle. However, increased AAV dose only moderately improved heart transduction. It never reached the level achieved by AAV-8. Our results suggest that differential cardiac transduction by AAV-8 and AAV-9 is likely because of the intrinsic property of the viral capsid rather than the vector dose.


Human Molecular Genetics | 2016

Dystrophin contains multiple independent membrane-binding domains

Junling Zhao; Kasun Kodippili; Yongping Yue; Chady H. Hakim; Lakmini Wasala; Xiufang Pan; Keqing Zhang; Nora Yang; Dongsheng Duan; Yi Lai

Dystrophin is a large sub-sarcolemmal protein. Its absence leads to Duchenne muscular dystrophy (DMD). Binding to the sarcolemma is essential for dystrophin to protect muscle from contraction-induced injury. It has long been thought that membrane binding of dystrophin depends on its cysteine-rich (CR) domain. Here, we provide in vivo evidence suggesting that dystrophin contains three additional membrane-binding domains including spectrin-like repeats (R)1-3, R10-12 and C-terminus (CT). To systematically study dystrophin membrane binding, we split full-length dystrophin into ten fragments and examined subcellular localizations of each fragment by adeno-associated virus-mediated gene transfer. In skeletal muscle, R1-3, CR domain and CT were exclusively localized at the sarcolemma. R10-12 showed both cytosolic and sarcolemmal localization. Importantly, the CR-independent membrane binding was conserved in murine and canine muscles. A critical function of the CR-mediated membrane interaction is the assembly of the dystrophin-associated glycoprotein complex (DGC). While R1-3 and R10-12 did not restore the DGC, surprisingly, CT alone was sufficient to establish the DGC at the sarcolemma. Additional studies suggest that R1-3 and CT also bind to the sarcolemma in the heart, though relatively weak. Taken together, our study provides the first conclusive in vivo evidence that dystrophin contains multiple independent membrane-binding domains. These structurally and functionally distinctive membrane-binding domains provide a molecular framework for dystrophin to function as a shock absorber and signaling hub. Our results not only shed critical light on dystrophin biology and DMD pathogenesis, but also provide a foundation for rationally engineering minimized dystrophins for DMD gene therapy.


Molecular therapy. Methods & clinical development | 2017

A Five-Repeat Micro-Dystrophin Gene Ameliorated Dystrophic Phenotype in the Severe DBA/2J-mdx Model of Duchenne Muscular Dystrophy

Chady H. Hakim; Nalinda B. Wasala; Xiufang Pan; Kasun Kodippili; Yongping Yue; Keqing Zhang; Gang Yao; Brittney Haffner; Sean X. Duan; Julian N. Ramos; Joel S. Schneider; N. Nora Yang; Jeffrey S. Chamberlain; Dongsheng Duan

Micro-dystrophins are highly promising candidates for treating Duchenne muscular dystrophy, a lethal muscle disease caused by dystrophin deficiency. Here, we report robust disease rescue in the severe DBA/2J-mdx model with a neuronal nitric oxide synthase (nNOS)-binding micro-dystrophin vector. 2 × 1013 vector genome particles/mouse of the vector were delivered intravenously to 10-week-old mice and were evaluated at 6 months of age. Saturated micro-dystrophin expression was detected in all skeletal muscles and the heart and restored the dystrophin-associated glycoprotein complex and nNOS. In skeletal muscle, therapy substantially reduced fibrosis and calcification and significantly attenuated inflammation. Centronucleation was significantly decreased in the tibialis anterior (TA) and extensor digitorum longus (EDL) muscles but not in the quadriceps. Muscle function was normalized in the TA and significantly improved in the EDL muscle. Heart histology and function were also evaluated. Consistent with the literature, DBA/2J-mdx mice showed myocardial calcification and fibrosis and cardiac hemodynamics was compromised. Surprisingly, similar myocardial pathology and hemodynamic defects were detected in control DBA/2J mice. As a result, interpretation of the cardiac data proved difficult due to the confounding phenotype in control DBA/2J mice. Our results support further development of this microgene vector for clinical translation. Further, DBA/2J-mdx mice are not good models for Duchenne cardiomyopathy.


Molecular Therapy | 2016

499. Intravenous Delivery of a Novel Micro-Dystrophin Vector Prevented Muscle Deterioration in Young Adult Canine Duchenne Muscular Dystrophy Dogs

Chady H. Hakim; Xiufang Pan; Kasun Kodippili; Thais Blessa; Hsiao T. Yang; G. Yao; Stacey B. Leach; Craig A. Emter; Yongping Yue; Keqing Zhang; Sean X. Duan; Nalinda B. Wasala; Gregory Jenkins; Charles R. Legg; Joel S. Schneider; Jeffrey S. Chamberlain; Dongsheng Duan

Duchenne muscular dystrophy (DMD) is a progressive, muscle wasting disorder that affects all muscles in the body. An effective gene therapy for DMD will require efficient whole body muscle transduction. It was recently demonstrated that a single intravenous injection of adeno-associated virus (AAV) can lead to safe, bodywide muscle gene transfer in adolescent dogs affected by the canine model of DMD (cDMD) (Yue et al. 2015 Hum Mol Genet). Here we evaluated systemic gene therapy in three 3.5-m-old cDMD dogs using a novel canine codon-optimized micro-dystrophin vector. Transcriptional regulation is controlled by the muscle-specific CK8 promoter and a synthetic polyadenylation signal. All experimental subjects received transient immune suppression. One dog was administrated with 5×1013 viral genome (vg) particles/kg of the vector. Two dogs received 1×1014 vg particles/kg of the vector. All dogs tolerated injection well. Blood biochemistry (weekly in the first four weeks and biweekly thereafter) was unremarkable. Growth curve was nominally disturbed during the immunosuppression regimen, but recovered thereafter. Biopsy at 1,3 and 6 months after injection revealed widespread micro-dystrophin expression in 50-80% myofibers. The dystrophin-associated glycoprotein complex, including neuronal nitric oxide synthase (nNOS), was restored. While limited in sample size, muscle damage usually seen in young adult untreated dogs (inflammation, fibrosis, calcification) were rarely observed. CD4+, CD8+, and regulatory T cells were minimally detected. Night activity monitoring showed a trend of improvement. Limb muscle force (both forelimb and hind limb) was significantly enhanced compared to that of pre-injection. Our data suggest that systemic AAV micro-dystrophin therapy may translate to large mammals afflicted by DMD (Supported by Solid GT, NIH, DOD, Jesses Journey).


IEEE Transactions on Applied Superconductivity | 2011

Dependence of Epitaxial Thin Films Properties on Template Thickness

S. Lee; J. Jiang; J. D. Weiss; C. W. Bark; C. Tarantini; M. D. Biegalski; A. Polyanskii; Yifei Zhang; C. T. Nelson; Xiufang Pan; E. E. Hellstrom; D. C. Larbalestier; C. B. Eom

In our previous report, we demonstrated the growth ofhigh-qualityepitaxialCo-doped (Ba-122) thin films using single crystalline (STO) templates on (LSAT) substrates with pulsed laser deposi- tion (PLD). Here, we report the dependence of the structural and superconducting properties of Ba-122 thin films on STO templates that were 2-150 unit cell (u.c.) thick. We obtained genuine epitaxial thin films with high crystalline quality and excellent supercon- ducting properties for templates above a critical thickness, which was 50 u.c. for our growth condition. Although the quality of Ba-122 is excellent above the critical thickness, the best crystalline quality and superconducting properties were obtained on 100 u.c.-thick STO templates. The best-quality Ba-122 thin films show an on-set transition temperature as high as 22.8 K, a transition width as narrow as 1.3 K, and critical current density as high as 3 .In our previous report, we demonstrated the growth of high-quality epitaxial Co-doped Ba(Fe<sub>1-x</sub>Co<sub>x</sub>)<sub>2</sub>As<sub>2</sub> (Ba-122) thin films using single crystalline SrTiO<sub>3</sub> (STO) templates on (La,Sr)(Al,Ta)O<sub>3</sub> (LSAT) substrates with pulsed laser deposition (PLD). Here, we report the dependence of the structural and superconducting properties of Ba-122 thin films on STO templates that were 2-150 unit cell (u.c.) thick. We obtained genuine epitaxial thin films with high crystalline quality and excellent superconducting properties for templates above a critical thickness, which was 50 u.c. for our growth condition. Although the quality of Ba-122 is excellent above the critical thickness, the best crystalline quality and superconducting properties were obtained on 100 u.c.-thick STO templates. The best-quality Ba-122 thin films show an on-set transition temperature (T<sub>c</sub>, <sub>on-set</sub>) as high as 22.8 K, a transition width (ΔT<sub>c</sub>) as narrow as 1.3 K, and critical current density (J<sub>c</sub>) as high as 3 MA/cm<sup>2</sup> .

Collaboration


Dive into the Xiufang Pan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aravind Asokan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge