Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerim Mutig is active.

Publication


Featured researches published by Kerim Mutig.


Transplantation | 2003

Use of primary human liver cells originating from discarded grafts in a bioreactor for liver support therapy and the prospects of culturing adult liver stem cells in bioreactors: a morphologic study.

Jörg C. Gerlach; Kerim Mutig; Igor M. Sauer; Petra Schrade; Ekaterina Efimova; T. I. M. Mieder; Götz Naumann; A. Grunwald; Gesine Pless; Antoni Mas; S. Bachmann; Peter Neuhaus; Katrin Zeilinger

Introduction. The development of a bioreactor providing a three-dimensional network of interwoven capillary membranes with integrated oxygenation and decentralized mass exchange enables the culture of primary human liver cells from discarded donor organs for extracorporeal liver support. Methods. Primary liver cells were isolated from 54 discarded organs (donor age 56.7±13.2 years). Between 2.8×1010 and 6.4×1010 parenchymal cells (PC) were cocultured with nonparenchymal cells (NPC) of the same organ in bioreactors (n=36). The metabolic activity of the cells was regularly determined during culture. The cell morphology and ultrastructure were investigated after culture periods of 1 to 5 weeks. Results. Cell metabolism was maintained over at least 3 weeks after a phase of adaptation lasting 2 to 3 days. Through the use of transmission electron microscopy and immunohistochemistry, it was demonstrated that PC and NPC spontaneously formed tissue-like structures. Vascular cavities (CD 31 immunoreactivity [IR]) and bile duct-like channels (CK 19 IR), both exhibiting proliferation activity (Ki-67 IR), were regularly distributed. Some of the bile duct-like channels showed similarities to the Canals of Hering found in the natural liver. Cells expressing morphologic and antigenic characteristics of adult liver stem cells (CD 34 IR and c-kit IR) and areas with cells that showed both hepatocyte and biliary characteristics were detected. Conclusion. The results show that primary human liver cells obtained from discarded donor organs recover and can be maintained in bioreactors for clinical liver support therapy. In addition, initial observations on adult liver stem-cell culture in bioreactors are presented.


American Journal of Physiology-renal Physiology | 2010

Short-term stimulation of the thiazide-sensitive Na+-Cl− cotransporter by vasopressin involves phosphorylation and membrane translocation

Kerim Mutig; Turgay Saritas; Shinichi Uchida; Thomas Kahl; Tordis Borowski; Alexander Paliege; Alexandra Böhlick; Markus Bleich; Qixian Shan; S. Bachmann

Vasopressin influences salt and water transport in renal epithelia. This is coordinated by the combined action of V2 receptor-mediated effects along distinct nephron segments. Modulation of NaCl reabsorption by vasopressin has been established in the loop of Henle, but its role in the distal convoluted tubule (DCT), an effective site for fine regulation of urinary electrolyte composition and the target for thiazide diuretics, is largely unknown. The Na+-Cl- cotransporter (NCC) of DCT is activated by luminal trafficking and phosphorylation at conserved NH2-terminal residues. Here, we demonstrate the effects of short-term vasopressin administration (30 min) on NCC activation in Brattleboro rats with central diabetes insipidus (DI) using the V2 receptor agonist desmopressin (dDAVP). The fraction of NCC abundance in the luminal plasma membrane was significantly increased upon dDAVP as shown by confocal microscopy, immunogold cytochemistry, and Western blot, suggesting increased apical trafficking of the transporter. Changes were paralleled by augmented phosphorylation of NCC as detected by antibodies against phospho-threonine and phospho-serine residues (2.5-fold increase at Thr53 and 1.4-fold increase at Ser71). dDAVP-induced phosphorylation of NCC, studied in tubular suspensions in the absence of systemic effects, was enhanced as well (1.7-fold increase at Ser71), which points to the direct mode of action of vasopressin in DCT. Changes were more pronounced in early (DCT1) than in late DCT as distinguished by the distribution of 11beta-hydroxysteroid dehydrogenase 2 in DCT2. These results suggest that the vasopressin-V(2) receptor-NCC signaling cascade is a novel effector system to adjust transepithelial NaCl reabsorption in DCT.


Journal of The American Society of Nephrology | 2004

Kidney-Specific Inactivation of the Megalin Gene Impairs Trafficking of Renal Inorganic Sodium Phosphate Cotransporter (NaPi-IIa)

S. Bachmann; Uwe Schlichting; Beate Geist; Kerim Mutig; Thomas Petsch; Desa Bacic; Carsten A. Wagner; Brigitte Kaissling; Jürg Biber; Heini Murer; Thomas E. Willnow

Renal reabsorption of inorganic phosphate is mediated by the type IIa sodium phosphate cotransporter (NaPi-IIa) of the proximal tubule. Changes in renal phosphate handling are mainly attributable to altered NaPi-IIa brush border membrane (BBM) expression. Parathyroid hormone (PTH) induces inactivation of NaPi-IIa by endocytic membrane retrieval and degradation. The key elements triggering this process are not clear to date. Megalin serves as a receptor for the endocytosis of multiple ligands and is coexpressed with NaPi-IIa in the proximal tubule. Investigated was the role of megalin in the regulation of NaPi-IIa in steady state and during inactivation. Kidneys and tubular BBM fractions from mice with a renal-specific megalin gene defect and from controls were analyzed by light and electron microscopic histochemical techniques and Western blot test. Steady-state levels of NaPi-IIa in BBM were significantly enhanced, mRNA levels preserved, and phosphaturia reduced in the absence of megalin. Fluid-phase endocytosis was prevented and the apical endocytic apparatus markedly reduced. Systemic administration of PTH resulted in a defective retrieval and impaired degradation of NaPi-IIa. In vitro, the application of various stimuli of the PTH-induced signaling cascade had no effect either. Adequate steady-state expression of NaPi-IIa and the capacity of the proximal tubule cell to react on PTH-driven inactivation of NaPi-IIa by endocytosis and intracellular translocation require the presence of megalin.


Journal of Biological Chemistry | 2011

Activation of the bumetanide-sensitive NA+,K+,2CL--cotransporter NKCC2 is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner

Kerim Mutig; Thomas Kahl; Turgay Saritas; Michael Godes; Pontus B. Persson; James Bates; Hajamohideen Raffi; Luca Rampoldi; Shinichi Uchida; Carsten Hille; Carsten Dosche; Satish Kumar; María Castañeda-Bueno; Gerardo Gamba; S. Bachmann

Active transport of NaCl across thick ascending limb (TAL) epithelium is accomplished by Na+,K+,2Cl− cotransporter (NKCC2). The activity of NKCC2 is determined by vasopressin (AVP) or intracellular chloride concentration and includes its amino-terminal phosphorylation. Co-expressed Tamm-Horsfall protein (THP) has been proposed to interact with NKCC2. We hypothesized that THP modulates NKCC2 activity in TAL. THP-deficient mice (THP−/−) showed an increased abundance of intracellular NKCC2 located in subapical vesicles (+47% compared with wild type (WT) mice), whereas base-line phosphorylation of NKCC2 was significantly decreased (−49% compared with WT mice), suggesting reduced activity of the transporter in the absence of THP. Cultured TAL cells with low endogenous THP levels and low base-line phosphorylation of NKCC2 displayed sharp increases in NKCC2 phosphorylation (+38%) along with a significant change of intracellular chloride concentration upon transfection with THP. In NKCC2-expressing frog oocytes, co-injection with THP cRNA significantly enhanced the activation of NKCC2 under low chloride hypotonic stress (+112% versus +235%). Short term (30 min) stimulation of the vasopressin V2 receptor pathway by V2 receptor agonist (deamino-cis-d-Arg vasopressin) resulted in enhanced NKCC2 phosphorylation in WT mice and cultured TAL cells transfected with THP, whereas in the absence of THP, NKCC2 phosphorylation upon deamino-cis-d-Arg vasopressin was blunted in both systems. Attenuated effects of furosemide along with functional and structural adaptation of the distal convoluted tubule in THP−/− mice supported the notion that NaCl reabsorption was impaired in TAL lacking THP. In summary, these results are compatible with a permissive role for THP in the modulation of NKCC2-dependent TAL salt reabsorptive function.


Proceedings of the National Academy of Sciences of the United States of America | 2013

WNK1-related Familial Hyperkalemic Hypertension results from an increased expression of L-WNK1 specifically in the distal nephron

Emmanuelle Vidal-Petiot; Emilie Elvira-Matelot; Kerim Mutig; Christelle Soukaseum; Véronique Baudrie; Shengnan Wu; Lydie Cheval; Elizabeth Huc; Michèle Cambillau; S. Bachmann; Alain Doucet; Xavier Jeunemaitre; Juliette Hadchouel

Significance Hypertension, one of the most common morbidity factors worldwide, is caused mostly by a deregulation of salt transport by the kidney, but underlying mechanisms remain elusive. The serine-threonine kinase With No lysine (K) 1 (WNK1) has been identified as a regulator of ion transport in the distal nephron, because its mutations cause Familial Hyperkalemic Hypertension (FHHt), a rare form of human hypertension. We generated a mouse model of WNK1-FHHt that fully recapitulates the disease and studied changes in expression of the Na+ and K+ transporters and channels involved in the maintenance of a correct blood pressure. Our study provides insights into the mechanisms underlying the pathogenesis of WNK1-FHHt and further corroborates the importance of WNK1 in ion homeostasis and blood pressure. Large deletions in the first intron of the With No lysine (K) 1 (WNK1) gene are responsible for Familial Hyperkalemic Hypertension (FHHt), a rare form of human hypertension associated with hyperkalemia and hyperchloremic metabolic acidosis. We generated a mouse model of WNK1-associated FHHt to explore the consequences of this intronic deletion. WNK1+/FHHt mice display all clinical and biological signs of FHHt. This phenotype results from increased expression of long WNK1 (L-WNK1), the ubiquitous kinase isoform of WNK1, in the distal convoluted tubule, which in turn, stimulates the activity of the Na–Cl cotransporter. We also show that the activity of the epithelial sodium channel is not altered in FHHt mice, suggesting that other mechanisms are responsible for the hyperkalemia and acidosis in this model. Finally, we observe a decreased expression of the renal outer medullary potassium channel in the late distal convoluted tubule of WNK1+/FHHt mice, which could contribute to the hyperkalemia. In summary, our study provides insights into the in vivo mechanisms underlying the pathogenesis of WNK1-mediated FHHt and further corroborates the importance of WNK1 in ion homeostasis and blood pressure.


Journal of The American Society of Nephrology | 2010

Reciprocal Regulation of Aquaporin-2 Abundance and Degradation by Protein Kinase A and p38-MAP Kinase

Pavel I. Nedvetsky; Vedrana Tabor; Grazia Tamma; Sven Beulshausen; Philipp Skroblin; Aline Kirschner; Kerim Mutig; Mareike Boltzen; Oscar Petrucci; Anna Vossenkämper; Burkhard Wiesner; S. Bachmann; Walter Rosenthal; Enno Klussmann

Arginine-vasopressin (AVP) modulates the water channel aquaporin-2 (AQP2) in the renal collecting duct to maintain homeostasis of body water. AVP binds to vasopressin V2 receptors (V2R), increasing cAMP, which promotes the redistribution of AQP2 from intracellular vesicles into the plasma membrane. cAMP also increases AQP2 transcription, but whether altered degradation also modulates AQP2 protein levels is not well understood. Here, elevation of cAMP increased AQP2 protein levels within 30 minutes in primary inner medullary collecting duct (IMCD) cells, in human embryonic kidney (HEK) 293 cells ectopically expressing AQP2, and in mouse kidneys. Accelerated transcription or translation did not explain this increase in AQP2 abundance. In IMCD cells, cAMP inhibited p38-mitogen-activated protein kinase (p38-MAPK) via activation of protein kinase A (PKA). Inhibition of p38-MAPK associated with decreased phosphorylation (serine 261) and polyubiquitination of AQP2, preventing proteasomal degradation. Our results demonstrate that AVP enhances AQP2 protein abundance by altering its proteasomal degradation through a PKA- and p38-MAPK-dependent pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis

Tilman Breiderhoff; Nina Himmerkus; Marchel Stuiver; Kerim Mutig; Constanze Will; Iwan C. Meij; S. Bachmann; Markus Bleich; Thomas E. Willnow; Dominik Müller

In the kidney, tight junction proteins contribute to segment specific selectivity and permeability of paracellular ion transport. In the thick ascending limb (TAL) of Henles loop, chloride is reabsorbed transcellularly, whereas sodium reabsorption takes transcellular and paracellular routes. TAL salt transport maintains the concentrating ability of the kidney and generates a transepithelial voltage that drives the reabsorption of calcium and magnesium. Thus, functionality of TAL ion transport depends strongly on the properties of the paracellular pathway. To elucidate the role of the tight junction protein claudin-10 in TAL function, we generated mice with a deletion of Cldn10 in this segment. We show that claudin-10 determines paracellular sodium permeability, and that its loss leads to hypermagnesemia and nephrocalcinosis. In isolated perfused TAL tubules of claudin-10–deficient mice, paracellular permeability of sodium is decreased, and the relative permeability of calcium and magnesium is increased. Moreover, furosemide-inhibitable transepithelial voltage is increased, leading to a shift from paracellular sodium transport to paracellular hyperabsorption of calcium and magnesium. These data identify claudin-10 as a key factor in control of cation selectivity and transport in the TAL, and deficiency in this pathway as a cause of nephrocalcinosis.


American Journal of Physiology-renal Physiology | 2008

Renal Na+-K+-Cl- cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent.

Pia Welker; Alexandra Böhlick; Kerim Mutig; Michele Salanova; Thomas Kahl; Hartmut Schlüter; Dieter Blottner; José Ponce-Coria; Gerardo Gamba; S. Bachmann

Apical bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), the kidney-specific member of a cation-chloride cotransporter superfamily, is an integral membrane protein responsible for the transepithelial reabsorption of NaCl. The role of NKCC2 is essential for renal volume regulation. Vasopressin (AVP) controls NKCC2 surface expression in cells of the thick ascending limb of the loop of Henle (TAL). We found that 40-70% of Triton X-100-insoluble NKCC2 was present in cholesterol-enriched lipid rafts (LR) in rat kidney and cultured TAL cells. The related Na(+)-Cl(-) cotransporter (NCC) from rat kidney was distributed in LR as well. NKCC2-containing LR were detected both intracellularly and in the plasma membrane. Bumetanide-sensitive transport of NKCC2 as analyzed by (86)Rb(+) influx in Xenopus laevis oocytes was markedly reduced by methyl-beta-cyclodextrin (MbetaCD)-induced cholesterol depletion. In TAL, short-term AVP application induced apical vesicular trafficking along with a shift of NKCC2 from non-raft to LR fractions. In parallel, increased colocalization of NKCC2 with the LR ganglioside GM1 and their polar translocation were assessed by confocal analysis. Apical biotinylation showed twofold increases in NKCC2 surface expression. These effects were blunted by mevalonate-lovastatin/MbetaCD-induced cholesterol deprivation. Collectively, these findings demonstrate that a pool of NKCC2 distributes in rafts. Results are consistent with a model in which LR mediate polar insertion, activity, and AVP-induced trafficking of NKCC2 in the control of transepithelial NaCl transport.


Journal of The American Society of Nephrology | 2013

SPAK Differentially Mediates Vasopressin Effects on Sodium Cotransporters

Turgay Saritas; Aljona Borschewski; James A. McCormick; Alexander Paliege; Christin Dathe; Shinichi Uchida; Andrew S. Terker; Nina Himmerkus; Markus Bleich; Sylvie Demaretz; Kamel Laghmani; Eric Delpire; David H. Ellison; S. Bachmann; Kerim Mutig

Activation of the Na(+)-K(+)-2Cl(-)-cotransporter (NKCC2) and the Na(+)-Cl(-)-cotransporter (NCC) by vasopressin includes their phosphorylation at defined, conserved N-terminal threonine and serine residues, but the kinase pathways that mediate this action of vasopressin are not well understood. Two homologous Ste20-like kinases, SPS-related proline/alanine-rich kinase (SPAK) and oxidative stress responsive kinase (OSR1), can phosphorylate the cotransporters directly. In this process, a full-length SPAK variant and OSR1 interact with a truncated SPAK variant, which has inhibitory effects. Here, we tested whether SPAK is an essential component of the vasopressin stimulatory pathway. We administered desmopressin, a V2 receptor-specific agonist, to wild-type mice, SPAK-deficient mice, and vasopressin-deficient rats. Desmopressin induced regulatory changes in SPAK variants, but not in OSR1 to the same degree, and activated NKCC2 and NCC. Furthermore, desmopressin modulated both the full-length and truncated SPAK variants to interact with and phosphorylate NKCC2, whereas only full-length SPAK promoted the activation of NCC. In summary, these results suggest that SPAK mediates the effect of vasopressin on sodium reabsorption along the distal nephron.


Pflügers Archiv: European Journal of Physiology | 2012

Aldosterone does not require angiotensin II to activate NCC through a WNK4–SPAK–dependent pathway

Nils van der Lubbe; Christina H. Lim; Marcel E. Meima; Richard van Veghel; Lena L. Rosenbaek; Kerim Mutig; A.H.J. Danser; Robert A. Fenton; Robert Zietse; Ewout J. Hoorn

We and others have recently shown that angiotensin II can activate the sodium chloride cotransporter (NCC) through a WNK4–SPAK-dependent pathway. Because WNK4 was previously shown to be a negative regulator of NCC, it has been postulated that angiotensin II converts WNK4 to a positive regulator. Here, we ask whether aldosterone requires angiotensin II to activate NCC and if their effects are additive. To do so, we infused vehicle or aldosterone in adrenalectomized rats that also received the angiotensin receptor blocker losartan. In the presence of losartan, aldosterone was still capable of increasing total and phosphorylated NCC twofold to threefold. The kinases WNK4 and SPAK also increased with aldosterone and losartan. A dose-dependent relationship between aldosterone and NCC, SPAK, and WNK4 was identified, suggesting that these are aldosterone-sensitive proteins. As more functional evidence of increased NCC activity, we showed that rats receiving aldosterone and losartan had a significantly greater natriuretic response to hydrochlorothiazide than rats receiving losartan only. To study whether angiotensin II could have an additive effect, rats receiving aldosterone with losartan were compared with rats receiving aldosterone only. Rats receiving aldosterone only retained more sodium and had twofold to fourfold increase in phosphorylated NCC. Together, our results demonstrate that aldosterone does not require angiotensin II to activate NCC and that WNK4 appears to act as a positive regulator in this pathway. The additive effect of angiotensin II may favor electroneutral sodium reabsorption during hypovolemia and may contribute to hypertension in diseases with an activated renin–angiotensin–aldosterone system.

Collaboration


Dive into the Kerim Mutig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas E. Willnow

Max Delbrück Center for Molecular Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge