Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas E. Willnow is active.

Publication


Featured researches published by Thomas E. Willnow.


Nature Genetics | 2007

The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease

Ekaterina Rogaeva; Yan Meng; Joseph H. Lee; Yongjun Gu; Toshitaka Kawarai; Fanggeng Zou; Taiichi Katayama; Clinton T. Baldwin; Rong Cheng; Hiroshi Hasegawa; Fusheng Chen; Nobuto Shibata; Kathryn L. Lunetta; Raphaelle Pardossi-Piquard; Christopher Bohm; Yosuke Wakutani; L. Adrienne Cupples; Karen T. Cuenco; Robert C. Green; Lorenzo Pinessi; Innocenzo Rainero; Sandro Sorbi; Amalia C. Bruni; Ranjan Duara; Robert P. Friedland; Rivka Inzelberg; Wolfgang Hampe; Hideaki Bujo; You-Qiang Song; Olav M. Andersen

The recycling of the amyloid precursor protein (APP) from the cell surface via the endocytic pathways plays a key role in the generation of amyloid β peptide (Aβ) in Alzheimer disease. We report here that inherited variants in the SORL1 neuronal sorting receptor are associated with late-onset Alzheimer disease. These variants, which occur in at least two different clusters of intronic sequences within the SORL1 gene (also known as LR11 or SORLA) may regulate tissue-specific expression of SORL1. We also show that SORL1 directs trafficking of APP into recycling pathways and that when SORL1 is underexpressed, APP is sorted into Aβ-generating compartments. These data suggest that inherited or acquired changes in SORL1 expression or function are mechanistically involved in causing Alzheimer disease.


Cell | 1999

An Endocytic Pathway Essential for Renal Uptake and Activation of the Steroid 25-(OH) Vitamin D3

Anders Nykjaer; Duska Dragun; Diego J. Walther; Henrik Vorum; Christian Jacobsen; Joachim Herz; F. Melsen; Erik Christensen; Thomas E. Willnow

Steroid hormones may enter cells by diffusion through the plasma membrane. However, we demonstrate here that some steroid hormones are taken up by receptor-mediated endocytosis of steroid-carrier complexes. We show that 25-(OH) vitamin D3 in complex with its plasma carrier, the vitamin D-binding protein, is filtered through the glomerulus and reabsorbed in the proximal tubules by the endocytic receptor megalin. Endocytosis is required to preserve 25-(OH) vitamin D3 and to deliver to the cells the precursor for generation of 1,25-(OH)2 vitamin D3, a regulator of the calcium metabolism. Megalin-/- mice are unable to retrieve the steroid from the glomerular filtrate and develop vitamin D deficiency and bone disease.


Nature | 2004

Sortilin is essential for proNGF-induced neuronal cell death.

Anders Nykjaer; Ramee Lee; Kenneth K. Teng; Pernille Jansen; Peder Madsen; Morten Nielsen; C Jacobsen; Marco Kliemannel; Elisabeth Schwarz; Thomas E. Willnow; Barbara L. Hempstead; Claus Munck Petersen

Sortilin (∼95 kDa) is a member of the recently discovered family of Vps10p-domain receptors, and is expressed in a variety of tissues, notably brain, spinal cord and muscle. It acts as a receptor for neurotensin, but predominates in regions of the nervous system that neither synthesize nor respond to this neuropeptide, suggesting that sortilin has additional roles. Sortilin is expressed during embryogenesis in areas where nerve growth factor (NGF) and its precursor, proNGF, have well-characterized effects. These neurotrophins can be released by neuronal tissues, and they regulate neuronal development through cell survival and cell death signalling. NGF regulates cell survival and cell death via binding to two different receptors, TrkA and p75NTR (ref. 10). In contrast, proNGF selectively induces apoptosis through p75NTR but not TrkA. However, not all p75NTR-expressing cells respond to proNGF, suggesting that additional membrane proteins are required for the induction of cell death. Here we report that proNGF creates a signalling complex by simultaneously binding to p75NTR and sortilin. Thus sortilin acts as a co-receptor and molecular switch governing the p75NTR-mediated pro-apoptotic signal induced by proNGF.


American Journal of Pathology | 1999

Megalin Knockout Mice as an Animal Model of Low Molecular Weight Proteinuria

Jörg-Robert Leheste; Boris Rolinski; Henrik Vorum; Jan Hilpert; Anders Nykjaer; Christian Jacobsen; Pierre Aucouturier; Jan Øivind Moskaug; Albrecht Otto; Erik Ilsø Christensen; Thomas E. Willnow

Megalin is an endocytic receptor expressed on the luminal surface of the renal proximal tubules. The receptor is believed to play an important role in the tubular uptake of macromolecules filtered through the glomerulus. To elucidate the role of megalin in vivo and to identify its endogenous ligands, we analyzed the proximal tubular function in mice genetically deficient for the receptor. We demonstrate that megalin-deficient mice exhibit a tubular resorption deficiency and excrete low molecular weight plasma proteins in the urine (low molecular weight proteinuria). Proteins excreted include small plasma proteins that carry lipophilic compounds including vitamin D-binding protein, retinol-binding protein, alpha(1)-microglobulin and odorant-binding protein. Megalin binds these proteins and mediates their cellular uptake. Urinary loss of carrier proteins in megalin-deficient mice results in concomitant loss of lipophilic vitamins bound to the carriers. Similar to megalin knockout mice, patients with low molecular weight proteinuria as in Fanconi syndrome are also shown to excrete vitamin/carrier complexes. Thus, these results identify a crucial role of the proximal tubule in retrieval of filtered vitamin/carrier complexes and the central role played by megalin in this process.


Cell | 2005

Role of endocytosis in cellular uptake of sex steroids

Annette Hammes; Thomas K. Andreassen; Robert Spoelgen; Jens Raila; Norbert Hubner; Herbert Schulz; Jochen Metzger; Florian J. Schweigert; Peter B. Luppa; Andreas Nykjaer; Thomas E. Willnow

Androgens and estrogens are transported bound to the sex hormone binding globulin (SHBG). SHBG is believed to keep sex steroids inactive and to control the amount of free hormones that enter cells by passive diffusion. Contrary to the free hormone hypothesis, we demonstrate that megalin, an endocytic receptor in reproductive tissues, acts as a pathway for cellular uptake of biologically active androgens and estrogens bound to SHBG. In line with this function, lack of receptor expression in megalin knockout mice results in impaired descent of the testes into the scrotum in males and blockade of vagina opening in females. Both processes are critically dependent on sex-steroid signaling, and similar defects are seen in animals treated with androgen- or estrogen-receptor antagonists. Thus, our findings uncover the existence of endocytic pathways for protein bound androgens and estrogens and their crucial role in development of the reproductive organs.


The EMBO Journal | 1996

RAP, a specialized chaperone, prevents ligand-induced ER retention and degradation of LDL receptor-related endocytic receptors

Thomas E. Willnow; Astrid Rohlmann; J Horton; H Otani; J R Braun; Robert E. Hammer; J Herz

The multifunctional low density lipoprotein (LDL) receptor‐related protein (LRP) forms a complex with a receptor‐associated protein (RAP) within the secretory pathway. RAP inhibits ligand binding to LRP and is required for normal functional expression of LRP in vivo, suggesting a physiological function as a specialized chaperone. We have used RAP‐deficient mice, generated by gene targeting, to investigate the role of RAP in the biosynthesis and biological activity of LRP and other members of the LDL receptor gene family in various organs and in embryonic fibroblasts. Our results demonstrate that RAP is required for the proper folding and export of the receptors from the endoplasmic reticulum (ER) by preventing the premature binding of co‐expressed ligands. Overexpression of apolipoprotein E (apoE), a high affinity ligand for LRP, results in dramatically reduced cellular LRP expression, an effect that is prevented by co‐expression of RAP. RAP thus defines a novel class of molecular chaperones that selectively protect endocytic receptors by binding to newly synthesized receptor polypeptides, thereby preventing ligand‐induced aggregation and subsequent degradation in the ER.


Journal of Clinical Investigation | 2000

Cubilin is an albumin binding protein important for renal tubular albumin reabsorption.

Henrik Birn; John C. Fyfe; Christian Jacobsen; Françoise Mounier; Pierre J. Verroust; Hans Ørskov; Thomas E. Willnow; Søren K. Moestrup; Erik Ilsø Christensen

Using affinity chromatography and surface plasmon resonance analysis, we have identified cubilin, a 460-kDa receptor heavily expressed in kidney proximal tubule epithelial cells, as an albumin binding protein. Dogs with a functional defect in cubilin excrete large amounts of albumin in combination with virtually abolished proximal tubule reabsorption, showing the critical role for cubilin in the uptake of albumin by the proximal tubule. Also, by immunoblotting and immunocytochemistry we show that previously identified low-molecular-weight renal albumin binding proteins are fragments of cubilin. In addition, we find that mice lacking the endocytic receptor megalin show altered urinary excretion, and reduced tubular reabsorption, of albumin. Because cubilin has been shown to colocalize and interact with megalin, we propose a mechanism of albumin reabsorption mediated by both of these proteins. This process may prove important for understanding interstitial renal inflammation and fibrosis caused by proximal tubule uptake of an increased load of filtered albumin.


Current Opinion in Neurobiology | 2005

p75NTR – live or let die

Anders Nykjaer; Thomas E. Willnow; Claus Munck Petersen

During neuronal development, neurotrophins are essential factors that promote survival, differentiation and myelination of neurons. The trophic signals are relayed to the cells via binding to Trk receptor tyrosine kinases and the p75 neurotrophin receptor. Paradoxically, the p75 neurotrophin receptor also ensures rapid and appropriate apoptosis of neonatal neurons not reaching their proper targets and transmits death signals to injured neurons. Until recently, the mechanisms by which the p75 neurotrophin receptor governs these opposing functions have remained elusive. By the identification of new ligands and cytosolic interacting partners, receptor cleavage products and coreceptors, some of these mechanisms are now being unraveled. Here, we review recent progress in delineating the molecular networks that enable p75(NTR) to dictate life and death.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D 3

Anders Nykjaer; John C. Fyfe; Renata Kozyraki; Jörg Robert Leheste; Christian Jacobsen; Morten Nielsen; Pierre J. Verroust; Maria Aminoff; Albert de la Chapelle; Søren K. Moestrup; Rahul Ray; Jørgen Gliemann; Thomas E. Willnow; Erik Ilsø Christensen

Steroid hormones are central regulators of a variety of biological processes. According to the free hormone hypothesis, steroids enter target cells by passive diffusion. However, recently we demonstrated that 25(OH) vitamin D3 complexed to its plasma carrier, the vitamin D-binding protein, enters renal proximal tubules by receptor-mediated endocytosis. Knockout mice lacking the endocytic receptor megalin lose 25(OH) vitamin D3 in the urine and develop bone disease. Here, we report that cubilin, a membrane-associated protein colocalizing with megalin, facilitates the endocytic process by sequestering steroid–carrier complexes on the cellular surface before megalin-mediated internalization of the cubilin-bound ligand. Dogs with an inherited disorder affecting cubilin biosynthesis exhibit abnormal vitamin D metabolism. Similarly, human patients with mutations causing cubilin dysfunction exhibit urinary excretion of 25(OH) vitamin D3. This observation identifies spontaneous mutations in an endocytic receptor pathway affecting cellular uptake and metabolism of a steroid hormone.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Megalin-dependent cubilin-mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia

Renata Kozyraki; John C. Fyfe; Pierre J. Verroust; Christian Jacobsen; Alice Dautry-Varsat; Jakub Gburek; Thomas E. Willnow; Erik Ilsø Christensen; Søren K. Moestrup

Cubilin is a 460-kDa protein functioning as an endocytic receptor for intrinsic factor vitamin B12 complex in the intestine and as a receptor for apolipoprotein A1 and albumin reabsorption in the kidney proximal tubules and the yolk sac. In the present study, we report the identification of cubilin as a novel transferrin (Tf) receptor involved in catabolism of Tf. Consistent with a cubilin-mediated endocytosis of Tf in the kidney, lysosomes of human, dog, and mouse renal proximal tubules strongly accumulate Tf, whereas no Tf is detectable in the endocytic apparatus of the renal tubule epithelium of dogs with deficient surface expression of cubilin. As a consequence, these dogs excrete increased amounts of Tf in the urine. Mice with deficient synthesis of megalin, the putative coreceptor colocalizing with cubilin, also excrete high amounts of Tf and fail to internalize Tf in their proximal tubules. However, in contrast to the dogs with the defective cubilin expression, the megalin-deficient mice accumulate Tf on the luminal cubilin-expressing surface of the proximal tubule epithelium. This observation indicates that megalin deficiency causes failure in internalization of the cubilin–ligand complex. The megalin-dependent, cubilin-mediated endocytosis of Tf and the potential of the receptors thereby to facilitate iron uptake were further confirmed by analyzing the uptake of 125I- and 59Fe-labeled Tf in cultured yolk sac cells.

Collaboration


Dive into the Thomas E. Willnow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joachim Herz

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Vanessa Schmidt

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annette Hammes

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne-Sophie Carlo

Max Delbrück Center for Molecular Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge