Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerong Shi is active.

Publication


Featured researches published by Kerong Shi.


PLOS ONE | 2013

Bovine mammary gene expression profiling during the onset of lactation.

Yuanyuan Gao; Xueyan Lin; Kerong Shi; Zhengui Yan; Zhonghua Wang

Background Lactogenesis includes two stages. Stage I begins a few weeks before parturition. Stage II is initiated around the time of parturition and extends for several days afterwards. Methodology/Principal Findings To better understand the molecular events underlying these changes, genome-wide gene expression profiling was conducted using digital gene expression (DGE) on bovine mammary tissue at three time points (on approximately day 35 before parturition (−35 d), day 7 before parturition (−7 d) and day 3 after parturition (+3 d)). Approximately 6.2 million (M), 5.8 million (M) and 6.1 million (M) 21-nt cDNA tags were sequenced in the three cDNA libraries (−35 d, −7 d and +3 d), respectively. After aligning to the reference sequences, the three cDNA libraries included 8,662, 8,363 and 8,359 genes, respectively. With a fold change cutoff criteria of ≥2 or ≤−2 and a false discovery rate (FDR) of ≤0.001, a total of 812 genes were significantly differentially expressed at −7 d compared with −35 d (stage I). Gene ontology analysis showed that those significantly differentially expressed genes were mainly associated with cell cycle, lipid metabolism, immune response and biological adhesion. A total of 1,189 genes were significantly differentially expressed at +3 d compared with −7 d (stage II), and these genes were mainly associated with the immune response and cell cycle. Moreover, there were 1,672 genes significantly differentially expressed at +3 d compared with −35 d. Gene ontology analysis showed that the main differentially expressed genes were those associated with metabolic processes. Conclusions The results suggest that the mammary gland begins to lactate not only by a gain of function but also by a broad suppression of function to effectively push most of the cells resources towards lactation.


Scientific Reports | 2017

MEN1 /Menin regulates milk protein synthesis through mTOR signaling in mammary epithelial cells

Honghui Li; Xue Liu; Zhonghua Wang; Xueyan Lin; Zhengui Yan; Qiaoqiao Cao; Meng Zhao; Kerong Shi

The MEN1 gene, which encodes the protein Menin, was investigated for its regulatory role in milk protein synthesis in mammary glands. Menin responds to nutrient and hormone levels via the PI3K/Akt/mTOR pathway. Bovine mammary epithelial cells and tissues were used as experimental models in this study. The results revealed that the milk protein synthesis capacity of mammary epithelial cells could be regulated by MEN1/Menin. The overexpression of Menin caused significant suppression of factors involved in the mTOR pathway, as well as milk protein κ-casein (CSNK). In contrast, a significant increase in these factors and CSNK was observed upon MEN1/Menin knockdown. The repression of MEN1/Menin on the mTOR pathway was also observed in mammary gland tissues. Additionally, MEN1/Menin was found to elicit a negative response on prolactin (PRL) and/or insulin (INS), which caused a similar downstream impact on mTOR pathway factors and milk proteins. Collectively, our data indicate that MEN1/Menin could play a regulatory role in milk protein synthesis through mTOR signaling in the mammary gland by mediating the effects of hormones and nutrient status. The discovery of Menin’s role in mammary glands suggests Menin could be potential new target for the improvement of milk performance and adjustment of lactation period of dairy cows.


Journal of Mammary Gland Biology and Neoplasia | 2017

Menin Modulates Mammary Epithelial Cell Numbers in Bovine Mammary Glands Through Cyclin D1

Kerong Shi; Xue Liu; Honghui Li; Xueyan Lin; Zhengui Yan; Qiaoqiao Cao; Meng Zhao; Zhongjin Xu; Zhonghua Wang

Menin, the protein encoded by the MEN1 gene, is abundantly expressed in the epithelial cells of mammary glands. Here, we found MEN1/menin expression slowly decreased with advancing lactation but increased by the end of lactation. It happened that the number of bovine mammary epithelial cells decreases since lactation, suggesting a role of menin in the control of mammary epithelial cell growth. Indeed, reduction of menin expression through MEN1-specific siRNA transfection in the bovine mammary epithelial cells caused cell growth arrest in G1/S phase. Decreased mRNA and protein expression of Cyclin D1 was observed upon MEN1 knockdown. Furthermore, menin was confirmed to physically bind to the promoter region of Cyclin D1 through a ChIP assay, indicating that menin plays a regulatory role in mammary epithelial cell cycle progression. Moreover, lower expression of MEN1/menin induced increased epithelial cell apoptosis and caused extracellular matrix remodeling by down-regulating its associated genes, such as DSG2 and KRT5, suggesting that menin’s role may also be involved in the control of cell–cell adhesion in normal mammary glands. Taken together, our data revealed an unknown molecular function of menin in epithelial cell proliferation, which may be important in the regulation of lactation behavior of mammary glands.


MicrobiologyOpen | 2018

Effect of hay supplementation timing on rumen microbiota in suckling calves

Xueyan Lin; jian Wang; Qiuling Hou; Yun Wang; Zhiyong Hu; Kerong Shi; Zhengui Yan; Zhonghua Wang

An animal feeding trial was conducted on 18 seven‐day‐old Holstein dairy bull calves weighing 42 ± 3 kg each. Calves were randomly assigned into three groups (n = 6 each). The dietary treatments were as follows: (1) milk and starter for the control group (MS), (2) supplementation of oat hay from week 2 on the basis of milk and starter (MSO2), and (3) supplementation of oat hay from week 6 on the basis of milk and starter (MSO6). All animals were fed starter and oat hay ad libitum. The major phyla in the different groups of rumen fluid included Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Euryarchaeota. The major genera were identified, and major genera proportions in the three groups were as follows: Methanobrevibacter (Euryarchaeota), 2.1%, 1.7%, and 2.1%; Olsenella (Actinobacteria), 23.9%, 17.7%, and 12.8%; Prevotella (Bacteroidetes), 10.5%, 16.5%, and 19.2%; Dialister (Firmicutes), 3.3%, 4.1%, and 2.8%; Succiniclasticum (Firmicutes), 3.8%, 4.7%, and 9.2%; and Sharpea (Firmicutes), 0.4%, 2.5%, and 0.2%, respectively. There were no significant differences in the various phyla among the three groups (p > .05). The results showed that calves hay supplementation time did not affect the diversity of the rumen microbiota in the suckling calves. However, the hay supplementation altered the proportion of the various microbial populations, supplementation of oat hay from week 2 on the basis of milk and starter could improve calves rumen pH.


Journal of Cellular Physiology | 2018

MiR-24-3p regulates cell proliferation and milk protein synthesis of mammary epithelial cells through menin in dairy cows: QIAOQIAO et al.

Cao Qiaoqiao; Honghui Li; Xue Liu; Zhengui Yan; Meng Zhao; Zhongjin Xu; Zhonghua Wang; Kerong Shi

MiR‐24‐3p, a broadly conserved, small, noncoding RNA, is abundantly expressed in mammary tissue. However, its regulatory role in this tissue remains poorly understood. It was predicted that miR‐24‐3p targets the 3′ untranslated region (3′‐UTR) of multiple endocrine neoplasia type 1 (MEN1), an important regulatory factor in mammary tissue. The objective of this study was to investigate the function of miR‐24‐3p in mammary cells. Using a luciferase assay in mammary epithelial cells (MAC‐T), miR‐24‐3p was confirmed to target the 3′‐UTR of MEN1. Furthermore, miR‐24‐3p negatively regulated the expression of the MEN1 gene and its encoded protein, menin. miR‐24‐3p enhanced proliferation of MAC‐T by promoting G1/S phase progression. MiR‐24‐3p also regulated the expression of key factors involved in phosphatidylinositol‐3‐kinase/protein kinase B/mammalian target of rapamycin and Janus kinase/signal transducer and activators of transcription signaling pathways, therefore controlling milk protein synthesis in epithelial cells. Thus, miR‐24‐3p appears to act on MAC‐T by targeting MEN1. The expression of miR‐24‐3p was controlled by MEN1/menin, indicating a negative feedback loop between miR‐24‐3p and MEN1/menin. The negatively inhibited expression pattern of miR‐24‐3p and MEN1 was active in mammary tissues at different lactation stages. The feedback mechanism is a new concept to further understand the lactation cycle of mammary glands and can possibly to be manipulated to improve milk yield and quality.


Scientific Reports | 2017

Structural alteration of a BYDV-like translation element (BTE) that attenuates p35 expression in three mild Tobacco bushy top virus isolates

Deya Wang; Chengming Yu; Shanshan Liu; Guolu Wang; Kerong Shi; Xiangdong Li; Xuefeng Yuan

To identify the molecular effects of Tobacco bushy top virus (TBTV) evolution on the degeneration of tobacco bushy top disease, three TBTV isolates with mild virulence were compared with wild-type TBTV to assess the translation of p35, which relies on a BYDV-like translation element (BTE) in a cap-independent manner. The in vitro expression of p35 in the mild isolates was only 20% to 40% of the expression observed in wt TBTV. Based on translation data from chimeric TBTV RNA, low-level p35 expression in the three mild isolates was associated with two regions: the 5′ terminal 500 nt region (RI) and the 3′ internal region (RV), which included the BTE. For the RV region, low level p35 expression was mainly associated with structural alterations of the BTE instead of specific sequence mutations within the BTE based on SHAPE structural probing and mutation analysis. Additionally, structural alteration of the TBTV BTE resulted from mutations outside of the BTE, implying structural complexity of the local region surrounding the BTE. This study is the first report on the structural alteration of the 3′ cap-independent translation element among different isolates of a given RNA virus, which is associated with variations in viral virulence.


Animal Production Science | 2017

Effect of initial time of forage supply on growth and rumen development in preweaning calves

Xueyan Lin; Yun Wang; J. Wang; Qiuling Hou; Zhiyong Hu; Kerong Shi; Zhengui Yan; Zhen-Yong Wang

To determine the effects of the initial timing of forage supply on growth, ruminal fermentation parameters and rumen development in preweaning calves, 18 7-day-old Holstein calves of 42 ± 3 kg were randomly divided into three treatment groups. The dietary treatments were (1) milk and commercial starter diet (MS) control, (2) milk and starter diet supplemented with oat hay at 2 weeks (MSO2), and (3) milk and starter diet supplemented with oat hay at 6 weeks (MSO6). Starter feed and oat hay were provided ad libitum, and 2 L of milk was provided twice daily. Samples were collected at 64 days of age. Supplementing with hay increased the dry-matter intake; P 0.05). The concentrations of serum glucose (P = 0.07) and β-hydroxybutyric acid; P < 0.05) were lower in the MSO6 group than in the MS and MSO2 groups. Rumination time was longer, and time spent on non-nutritive oral behaviour (such as e.g. licking surfaces, tongue rolling, wood-shaving consumption) was lower for hay-supplemented calves than for the control (P < 0.05). Although ruminal pH of hay-supplemented calves was significantly higher than that of the control, total rumen fluid volatile fatty acid concentrations were not significantly different among treatments. Calves in the MSO2 group had a smaller ratio of empty weight to slaughter weight (P < 0.05) and a larger total digestive tract weight (P < 0.05); the empty gastrointestinal tract weights were similar among the three treatments, suggesting that MSO2 calf weight gain may have resulted from intestinal chyme accumulation. Compared with the control, hay-supplemented calves had reduced rumen papilla width and epithelium thickness (P < 0.05), and no discernable plaque formation. Hay supplementation in the diet of preweaning calves improved the overall dry-matter intake, improved rumination, reduced non-nutritive oral behaviours, improved rumen pH, and ensured healthy rumen development; furthermore, productivity and rumen development were better in calves supplemented with hay from the second week.


Advances in Bioscience and Biotechnology | 2017

Effects of Supplemental Dietary Energy Source on Feed Intake, Lactation Performance, and Serum Indices of Early-Lactating Holstein Cows in a Positive Energy Balance

Xueyan Lin; Guimei Liu; Zhengyan Yin; Yun Wang; Qiuling Hou; Kerong Shi; Zhonghua Wang


Advances in Bioscience and Biotechnology | 2017

Effects of Dietary Energy Density in the Dry Period on the Production Performance and Metabolism of Dairy Cows

Yun Wang; Qiuling Hou; Gaozhan Cai; Zhiyong Hu; Kerong Shi; Zhengui Yan; Xueyan Lin; Zhonghua Wang


Advances in Bioscience and Biotechnology | 2016

The Effects of a Hyperinsulinemic-Euglycemic Clamp on Milk Fat Synthesis and the Expression of Fat Synthesis-Related Genes in the Mammary Gland Tissues of Lactating Goats

Xueyan Lin; Guimei Liu; Yabin Zhang; Zhengui Yan; Qiuling Hou; Kerong Shi; Yun Wang; Zhonghua Wang

Collaboration


Dive into the Kerong Shi's collaboration.

Top Co-Authors

Avatar

Xueyan Lin

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhonghua Wang

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhengui Yan

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qiuling Hou

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yun Wang

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Honghui Li

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Meng Zhao

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xue Liu

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhiyong Hu

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qiaoqiao Cao

Shandong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge