Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerstin Gagaring is active.

Publication


Featured researches published by Kerstin Gagaring.


Science | 2011

Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery

Stephan Meister; David Plouffe; Kelli Kuhen; Ghislain M. C. Bonamy; Tao Wu; S. Whitney Barnes; Selina Bopp; Rachel Borboa; A. Taylor Bright; Jianwei Che; Steve Cohen; Neekesh V. Dharia; Kerstin Gagaring; Montip Gettayacamin; Perry Gordon; Todd Groessl; Nobutaka Kato; Marcus C. S. Lee; Case W. McNamara; David A. Fidock; Advait Nagle; Tae-gyu Nam; Wendy Richmond; Jason Roland; Matthias Rottmann; Bin Zhou; Patrick Froissard; Richard Glynne; Dominique Mazier; Jetsumon Sattabongkot

Imidazolopiperazine compounds inhibit liver-stage malaria parasites with one oral dose in mice. Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration < 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.


Nature | 2013

Targeting Plasmodium PI(4)K to eliminate malaria

Case W. McNamara; Marcus C. S. Lee; Chek Shik Lim; Siau Hoi Lim; Jason Roland; Advait Nagle; Oliver Simon; Bryan K. S. Yeung; Arnab K. Chatterjee; Susan McCormack; Micah J. Manary; Anne-Marie Zeeman; Koen J. Dechering; T. R. Santha Kumar; Philipp P. Henrich; Kerstin Gagaring; Maureen Ibanez; Nobutaka Kato; Kelli Kuhen; Christoph Fischli; Matthias Rottmann; David Plouffe; Badry Bursulaya; Stephan Meister; Lucia E. Rameh; Joerg Trappe; Dorothea Haasen; Martijn Timmerman; Robert W. Sauerwein; Rossarin Suwanarusk

Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.Summary Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here, we identify a lipid kinase, phosphatidylinositol 4-kinase (PI4K), as the target of imidazopyrazines, a novel antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens, P. falciparum and P. vivax, and inhibit liver stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI4K, altering the intracellular distribution of phosphatidylinositol 4-phosphate. Collectively, our data define PI4K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.


Journal of Medicinal Chemistry | 2011

Imidazolopiperazines: hit to lead optimization of new antimalarial agents.

Tao Wu; Advait Nagle; Kelli Kuhen; Kerstin Gagaring; Rachel Borboa; Caroline Francek; Zhong Chen; David Plouffe; Anne Goh; Suresh B. Lakshminarayana; Jeanette Wu; Hui Qing Ang; Peiting Zeng; Min Low Kang; William Tan; Maria Tan; Nicole Ye; Xuena Lin; Christopher Caldwell; Jared Ek; Suzanne Skolnik; Fenghua Liu; Jianling Wang; Jonathan Chang; Chun Li; Thomas Hollenbeck; Tove Tuntland; John Isbell; Christoph Fischli; Reto Brun

Starting from a hit series from a GNF compound library collection and based on a cell-based proliferation assay of Plasmodium falciparum, a novel imidazolopiperazine scaffold was optimized. SAR for this series of compounds is discussed, focusing on optimization of cellular potency against wild-type and drug resistant parasites and improvement of physiochemical and pharmacokinetic properties. The lead compounds in this series showed good potencies in vitro and decent oral exposure levels in vivo. In a Plasmodium berghei mouse infection model, one lead compound lowered the parasitemia level by 99.4% after administration of 100 mg/kg single oral dose and prolonged mice survival by an average of 17.0 days. The lead compounds were also well-tolerated in the preliminary in vitro toxicity studies and represents an interesting lead for drug development.


Science Translational Medicine | 2013

Indolcarboxamide Is a Preclinical Candidate for Treating Multidrug-Resistant Tuberculosis

Srinivasa P. S. Rao; Suresh B. Lakshminarayana; Ravinder Reddy Kondreddi; Maxime Herve; Luis R. Camacho; sarath Kalapala; Jan Jiricek; Ng L. Ma; Bee Huat Tan; Seow H. Ng; Mahesh Nanjundappa; Sindhu Ravindran; Peck Gee Seah; Pamela Thayalan; Siao H. Lim; Boon Heng Lee; Anne Goh; Whitney Barnes; Zhong Chen; Kerstin Gagaring; Arnab K. Chatterjee; Kevin Pethe; Kelli Kuhen; John R. Walker; Gu Feng; Sreehari Babu; Lijun Zhang; Francesca Blasco; David Beer; Margaret Weaver

The small-molecule indolcarboxamide is a potential drug candidate for treating multidrug-resistant tuberculosis. Combating the Scourge of TB Tuberculosis (TB) caused by the bacterium Mycobacterium tuberculosis (Mtb) continues to be an epidemic in many parts of the world. Resistance to multiple drugs and the emergence of the HIV epidemic have created new challenges in TB treatment. Drugs with new mechanisms of action and improved safety profiles are urgently needed to manage TB. To achieve this goal, Rao et al. screened a chemical library of nearly 2 million compounds for inhibitors of mycobacterial growth. Using phenotypic high-throughput screening, they identified a group of molecules called indolcarboxamides as a new class of antitubercular bactericidal agents. Several indolcarboxamide analogs were evaluated to optimize their activity against Mtb and improve their properties. Two lead candidates, NITD-304 and NITD-349, with promising in vivo pharmacokinetic profiles showed potent activity against both drug-sensitive and multidrug-resistant Mtb clinical isolates. Investigating the mechanism of action, the authors found that the molecular target of the indolcarboxamides was MmpL3, a protein that is essential for mycobacterial cell wall biosynthesis and growth. NITD-304 and NITD-349 were efficacious in treating Mtb infections in mouse models of acute and chronic TB with a favorable safety margin. NITD-304 and NITD-349 are promising new drug candidates for treating TB with the potential to help fill the gap in the global TB drug discovery portfolio. New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). We have identified and characterized the indolcarboxamides as a new class of antitubercular bactericidal agent. Genetic and lipid profiling studies identified the likely molecular target of indolcarboxamides as MmpL3, a transporter of trehalose monomycolate that is essential for mycobacterial cell wall biosynthesis. Two lead candidates, NITD-304 and NITD-349, showed potent activity against both drug-sensitive and multidrug-resistant clinical isolates of Mtb. Promising pharmacokinetic profiles of both compounds after oral dosing in several species enabled further evaluation for efficacy and safety. NITD-304 and NITD-349 were efficacious in treating both acute and chronic Mtb infections in mouse efficacy models. Furthermore, dosing of NITD-304 and NITD-349 for 2 weeks in exploratory rat toxicology studies revealed a promising safety margin. Finally, neither compound inhibited the activity of major cytochrome P-450 enzymes or the hERG (human ether-a-go-go related gene) channel. These results suggest that NITD-304 and NITD-349 should undergo further development as a potential treatment for multidrug-resistant TB.


Antimicrobial Agents and Chemotherapy | 2014

KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission

Kelli Kuhen; Arnab K. Chatterjee; Matthias Rottmann; Kerstin Gagaring; Rachel Borboa; Jennifer Buenviaje; Zhong Chen; Carolyn Francek; Tao Wu; Advait Nagle; S. Whitney Barnes; David Plouffe; Marcus C. S. Lee; David A. Fidock; Wouter Graumans; Marga van de Vegte-Bolmer; Geert Jan van Gemert; Grennady Wirjanata; Boni F. Sebayang; Jutta Marfurt; Bruce Russell; Rossarin Suwanarusk; Ric N. Price; François Nosten; Anchalee Tungtaeng; Montip Gettayacamin; Jetsumon Sattabongkot; Jennifer Taylor; John R. Walker; David C. Tully

ABSTRACT Renewed global efforts toward malaria eradication have highlighted the need for novel antimalarial agents with activity against multiple stages of the parasite life cycle. We have previously reported the discovery of a novel class of antimalarial compounds in the imidazolopiperazine series that have activity in the prevention and treatment of blood stage infection in a mouse model of malaria. Consistent with the previously reported activity profile of this series, the clinical candidate KAF156 shows blood schizonticidal activity with 50% inhibitory concentrations of 6 to 17.4 nM against P. falciparum drug-sensitive and drug-resistant strains, as well as potent therapeutic activity in a mouse models of malaria with 50, 90, and 99% effective doses of 0.6, 0.9, and 1.4 mg/kg, respectively. When administered prophylactically in a sporozoite challenge mouse model, KAF156 is completely protective as a single oral dose of 10 mg/kg. Finally, KAF156 displays potent Plasmodium transmission blocking activities both in vitro and in vivo. Collectively, our data suggest that KAF156, currently under evaluation in clinical trials, has the potential to treat, prevent, and block the transmission of malaria.


Journal of Medicinal Chemistry | 2012

Imidazolopiperazines:Lead Optimization of the Second-Generation Antimalarial Agents

Advait Nagle; Tao Wu; Kelli Kuhen; Kerstin Gagaring; Rachel Borboa; Caroline Francek; Zhong Chen; David Plouffe; Xuena Lin; Christopher Caldwell; Jared Ek; Suzanne Skolnik; Fenghua Liu; Jianling Wang; Jonathan Chang; Chun Li; Bo Liu; Thomas Hollenbeck; Tove Tuntland; John Isbell; Tiffany Chuan; Philip B. Alper; Christoph Fischli; Reto Brun; Suresh B. Lakshminarayana; Matthias Rottmann; Thierry T. Diagana; Elizabeth A. Winzeler; Richard Glynne; David C. Tully

On the basis of the initial success of optimization of a novel series of imidazolopiperazines, a second generation of compounds involving changes in the core piperazine ring was synthesized to improve antimalarial properties. These changes were carried out to further improve the potency and metabolic stability of the compounds by leveraging the outcome of a set of in vitro metabolic identification studies. The optimized 8,8-dimethyl imidazolopiperazine analogues exhibited improved potency, in vitro metabolic stability profile and, as a result, enhanced oral exposure in vivo in mice. The optimized compounds were found to be more efficacious than the current antimalarials in a malaria mouse model. They exhibit moderate oral exposure in rat pharmacokinetic studies to achieve sufficient multiples of the oral exposure at the efficacious dose in toxicology studies.


ACS Chemical Biology | 2015

Mutations in the P‑Type Cation-Transporter ATPase 4, PfATP4, Mediate Resistance to Both Aminopyrazole and Spiroindolone Antimalarials

Erika L. Flannery; Case W. McNamara; Sang Wan Kim; Tomoyo Sakata Kato; Fengwu Li; Christine H. Teng; Kerstin Gagaring; Micah J. Manary; Rachel Barboa; Stephan Meister; Kelli Kuhen; Joseph M. Vinetz; Arnab K. Chatterjee; Elizabeth A. Winzeler

Aminopyrazoles are a new class of antimalarial compounds identified in a cellular antiparasitic screen with potent activity against Plasmodium falciparum asexual and sexual stage parasites. To investigate their unknown mechanism of action and thus identify their target, we cultured parasites in the presence of a representative member of the aminopyrazole series, GNF-Pf4492, to select for resistance. Whole genome sequencing of three resistant lines showed that each had acquired independent mutations in a P-type cation-transporter ATPase, PfATP4 (PF3D7_1211900), a protein implicated as the novel Plasmodium spp. target of another, structurally unrelated, class of antimalarials called the spiroindolones and characterized as an important sodium transporter of the cell. Similarly to the spiroindolones, GNF-Pf4492 blocks parasite transmission to mosquitoes and disrupts intracellular sodium homeostasis. Our data demonstrate that PfATP4 plays a critical role in cellular processes, can be inhibited by two distinct antimalarial pharmacophores, and supports the recent observations that PfATP4 is a critical antimalarial target.


Antimicrobial Agents and Chemotherapy | 2014

KAI407, a Potent Non-8-Aminoquinoline Compound That Kills Plasmodium cynomolgi Early Dormant Liver Stage Parasites In Vitro.

Anne-Marie Zeeman; Sandra M. van Amsterdam; Case W. McNamara; Annemarie Voorberg-van der Wel; Els J. Klooster; Alexander van den Berg; Edmond J. Remarque; David Plouffe; Geert-Jan van Gemert; Adrian J. F. Luty; Robert W. Sauerwein; Kerstin Gagaring; Rachel Borboa; Zhong Chen; Kelli Kuhen; Richard Glynne; Arnab K. Chatterjee; Advait Nagle; Jason Roland; Elizabeth A. Winzeler; Didier Leroy; Brice Campo; Thierry T. Diagana; Bryan K. S. Yeung; Alan W. Thomas; Clemens H. M. Kocken

ABSTRACT Preventing relapses of Plasmodium vivax malaria through a radical cure depends on use of the 8-aminoquinoline primaquine, which is associated with safety and compliance issues. For future malaria eradication strategies, new, safer radical curative compounds that efficiently kill dormant liver stages (hypnozoites) will be essential. A new compound with potential radical cure activity was identified using a low-throughput assay of in vitro-cultured hypnozoite forms of Plasmodium cynomolgi (an excellent and accessible model for Plasmodium vivax). In this assay, primary rhesus hepatocytes are infected with P. cynomolgi sporozoites, and exoerythrocytic development is monitored in the presence of compounds. Liver stage cultures are fixed after 6 days and stained with anti-Hsp70 antibodies, and the relative proportions of small (hypnozoite) and large (schizont) forms relative to the untreated controls are determined. This assay was used to screen a series of 18 known antimalarials and 14 new non-8-aminoquinolines (preselected for blood and/or liver stage activity) in three-point 10-fold dilutions (0.1, 1, and 10 μM final concentrations). A novel compound, designated KAI407 showed an activity profile similar to that of primaquine (PQ), efficiently killing the earliest stages of the parasites that become either primary hepatic schizonts or hypnozoites (50% inhibitory concentration [IC50] for hypnozoites, KAI407, 0.69 μM, and PQ, 0.84 μM; for developing liver stages, KAI407, 0.64 μM, and PQ, 0.37 μM). When given as causal prophylaxis, a single oral dose of 100 mg/kg of body weight prevented blood stage parasitemia in mice. From these results, we conclude that KAI407 may represent a new compound class for P. vivax malaria prophylaxis and potentially a radical cure.


ACS Infectious Diseases | 2016

High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria

Justine Swann; Victoria C. Corey; Christina Scherer; Nobutaka Kato; Eamon Comer; Micah Maetani; Yevgeniya Antonova-Koch; Christin Reimer; Kerstin Gagaring; Maureen Ibanez; David Plouffe; Anne-Marie Zeeman; Clemens H. M. Kocken; Case W. McNamara; Stuart L. Schreiber; Brice Campo; Elizabeth A. Winzeler; Stephan Meister

In order to identify the most attractive starting points for drugs that can be used to prevent malaria, a diverse chemical space comprising tens of thousands to millions of small molecules may need to be examined. Achieving this throughput necessitates the development of efficient ultra-high-throughput screening methods. Here, we report the development and evaluation of a luciferase-based phenotypic screen of malaria exoerythrocytic-stage parasites optimized for a 1536-well format. This assay uses the exoerythrocytic stage of the rodent malaria parasite, Plasmodium berghei, and a human hepatoma cell line. We use this assay to evaluate several biased and unbiased compound libraries, including two small sets of molecules (400 and 89 compounds, respectively) with known activity against malaria erythrocytic-stage parasites and a set of 9886 diversity-oriented synthesis (DOS)-derived compounds. Of the compounds screened, we obtain hit rates of 12–13 and 0.6% in preselected and naïve libraries, respectively, and identify 52 compounds with exoerythrocytic-stage activity less than 1 μM and having minimal host cell toxicity. Our data demonstrate the ability of this method to identify compounds known to have causal prophylactic activity in both human and animal models of malaria, as well as novel compounds, including some exclusively active against parasite exoerythrocytic stages.


ACS Medicinal Chemistry Letters | 2014

Lead optimization of imidazopyrazines: a new class of antimalarial with activity on Plasmodium liver stages.

Bin Zou; Advait Nagle; Arnab K. Chatterjee; Seh Yong Leong; Liying Jocelyn Tan; Wei Lin Sandra Sim; Pranab Mishra; Prasuna Guntapalli; David C. Tully; Suresh B. Lakshminarayana; Chek Shik Lim; Yong Cheng Tan; Siti Nurdiana Abas; Christophe Bodenreider; Kelli Kuhen; Kerstin Gagaring; Rachel Borboa; Jonathan Chang; Chun Li; Thomas Hollenbeck; Tove Tuntland; Anne-Marie Zeeman; Clemens H. M. Kocken; Case W. McNamara; Nobutaka Kato; Elizabeth A. Winzeler; Bryan K. S. Yeung; Thierry T. Diagana; Paul W. Smith; Jason Roland

Imidazopyridine 1 was identified from a phenotypic screen against P. falciparum (Pf) blood stages and subsequently optimized for activity on liver-stage schizonts of the rodent parasite P. yoelii (Py) as well as hypnozoites of the simian parasite P. cynomolgi (Pc). We applied these various assays to the cell-based lead optimization of the imidazopyrazines, exemplified by 3 (KAI407), and show that optimized compounds within the series with improved pharmacokinetic properties achieve causal prophylactic activity in vivo and may have the potential to target the dormant stages of P. vivax malaria.

Collaboration


Dive into the Kerstin Gagaring's collaboration.

Top Co-Authors

Avatar

Kelli Kuhen

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arnab K. Chatterjee

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

David Plouffe

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Rachel Borboa

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Case W. McNamara

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Glynne

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge