Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerstin Höner zu Bentrup is active.

Publication


Featured researches published by Kerstin Höner zu Bentrup.


Emerging Infectious Diseases | 2007

In vitro cell culture infectivity assay for human noroviruses

Timothy M. Straub; Kerstin Höner zu Bentrup; Patricia Orosz Coghlan; Alice Dohnalkova; Brooke K. Mayer; Rachel A. Bartholomew; Catherine O. Valdez; Cynthia J. Bruckner-Lea; Charles P. Gerba; Morteza Abbaszadegan; Cheryl A. Nickerson

A 3-dimensional organoid human small intestinal epithelium model was used.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells

Seth B. Coffelt; Frank C. Marini; Keri Watson; Kevin J. Zwezdaryk; Jennifer Dembinski; Heather L. LaMarca; Suzanne L. Tomchuck; Kerstin Höner zu Bentrup; Elizabeth S. Danka; Sarah L. Henkle; Aline B. Scandurro

Bone marrow-derived mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been shown to engraft into the stroma of several tumor types, where they contribute to tumor progression and metastasis. However, the chemotactic signals mediating MSC migration to tumors remain poorly understood. Previous studies have shown that LL-37 (leucine, leucine-37), the C-terminal peptide of human cationic antimicrobial protein 18, stimulates the migration of various cell types and is overexpressed in ovarian, breast, and lung cancers. Although there is evidence to support a pro-tumorigenic role for LL-37, the function of the peptide in tumors remains unclear. Here, we demonstrate that neutralization of LL-37 in vivo significantly reduces the engraftment of MSCs into ovarian tumor xenografts, resulting in inhibition of tumor growth as well as disruption of the fibrovascular network. Migration and invasion experiments conducted in vitro indicated that the LL-37-mediated migration of MSCs to tumors likely occurs through formyl peptide receptor like-1. To assess the response of MSCs to the LL-37-rich tumor microenvironment, conditioned medium from LL-37-treated MSCs was assessed and found to contain increased levels of several cytokines and pro-angiogenic factors compared with controls, including IL-1 receptor antagonist, IL-6, IL-10, CCL5, VEGF, and matrix metalloproteinase-2. Similarly, Matrigel mixed with LL-37, MSCs, or the combination of the two resulted in a significant number of vascular channels in nude mice. These data indicate that LL-37 facilitates ovarian tumor progression through recruitment of progenitor cell populations to serve as pro-angiogenic factor-expressing tumor stromal cells.


Journal of Microbiological Methods | 2003

Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis

Cheryl A. Nickerson; C. Mark Ott; James W. Wilson; Rajee Ramamurthy; C. L. LeBlanc; Kerstin Höner zu Bentrup; Timothy G. Hammond; Duane L. Pierson

Bacteria inhabit an impressive variety of ecological niches and must adapt constantly to changing environmental conditions. While numerous environmental signals have been examined for their effect on bacteria, the effects of mechanical forces such as shear stress and gravity have only been investigated to a limited extent. However, several important studies have demonstrated a key role for the environmental signals of low shear and/or microgravity in the regulation of bacterial gene expression, physiology, and pathogenesis [Chem. Rec. 1 (2001) 333; Appl. Microbiol. Biotechnol. 54 (2000) 33; Appl. Environ. Microbiol. 63 (1997) 4090; J. Ind. Microbiol. 18 (1997) 22; Curr. Microbiol. 34(4) (1997) 199; Appl. Microbiol. Biotechnol. 56(3-4) (2001) 384; Infect Immun. 68(6) (2000) 3147; Cell 109(7) (2002) 913; Appl. Environ. Microbiol. 68(11) (2002) 5408; Proc. Natl. Acad. Sci. U. S. A. 99(21) (2002) 13807]. The response of bacteria to these environmental signals, which are similar to those encountered during prokaryotic life cycles, may provide insight into bacterial adaptations to physiologically relevant conditions. This review focuses on the current and potential future research trends aimed at understanding the effect of the mechanical forces of low shear and microgravity analogues on different bacterial parameters. In addition, this review also discusses the use of microgravity technology to generate physiologically relevant human tissue models for research in bacterial pathogenesis.


PLOS ONE | 2008

Media ion composition controls regulatory and virulence response of Salmonella in spaceflight.

James W. Wilson; C. Mark Ott; Laura Quick; Richard Davis; Kerstin Höner zu Bentrup; Aurélie Crabbé; Emily Richter; Shameema Sarker; Jennifer Barrila; Steffen Porwollik; Pui Cheng; Michael McClelland; George Tsaprailis; Timothy Radabaugh; Andrea M. Hunt; Miti Shah; Mayra Nelman-Gonzalez; Steve Hing; Macarena Parra; Paula Dumars; Kelly Norwood; Ramona Bober; Jennifer Devich; Ashleigh Ruggles; Autumn Cdebaca; Satro Narayan; Joseph G. Benjamin; Carla Goulart; Mark Rupert; Luke Catella

The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model. Using whole genome microarray and proteomic analyses from two independent Space Shuttle missions, we identified evolutionarily conserved molecular pathways in Salmonella that respond to spaceflight under all media compositions tested. Identification of conserved regulatory paradigms opens new avenues to control microbial responses during the infection process and holds promise to provide an improved understanding of human health and disease on Earth.


International Journal of Cancer | 2007

Ovarian cancers overexpress the antimicrobial protein hCAP-18 and its derivative LL-37 increases ovarian cancer cell proliferation and invasion

Seth B. Coffelt; Ruth S. Waterman; Luisa Florez; Kerstin Höner zu Bentrup; Kevin J. Zwezdaryk; Suzanne L. Tomchuck; Heather L. LaMarca; Elizabeth S. Danka; Cindy A. Morris; Aline B. Scandurro

The role of the pro‐inflammatory peptide, LL‐37, and its pro‐form, human cationic antimicrobial protein 18 (hCAP‐18), in cancer development and progression is poorly understood. In damaged and inflamed tissue, LL‐37 functions as a chemoattractant, mitogen and pro‐angiogenic factor suggesting that the peptide may potentiate tumor progression. The aim of this study was to characterize the distribution of hCAP‐18/LL‐37 in normal and cancerous ovarian tissue and to examine the effects of LL‐37 on ovarian cancer cells. Expression of hCAP‐18/LL‐37 was localized to immune and granulosa cells of normal ovarian tissue. By contrast, ovarian tumors displayed significantly higher levels of hCAP‐18/LL‐37 where expression was observed in tumor and stromal cells. Protein expression was statistically compared to the degree of immune cell infiltration and microvessel density in epithelial‐derived ovarian tumors and a significant correlation was observed for both. It was demonstrated that ovarian tumor tissue lysates and ovarian cancer cell lines express hCAP‐18/LL‐37. Treatment of ovarian cancer cell lines with recombinant LL‐37 stimulated proliferation, chemotaxis, invasion and matrix metalloproteinase expression. These data demonstrate for the first time that hCAP‐18/LL‐37 is significantly overexpressed in ovarian tumors and suggest LL‐37 may contribute to ovarian tumorigenesis through direct stimulation of tumor cells, initiation of angiogenesis and recruitment of immune cells. These data provide further evidence of the existing relationship between pro‐inflammatory molecules and ovarian cancer progression.


Journal of Bacteriology | 2007

Pseudomonas aeruginosa AlgR Represses the Rhl Quorum-Sensing System in a Biofilm-Specific Manner

Lisa A. Morici; Alexander J. Carterson; Victoria E. Wagner; Anders Frisk; Jill R. Schurr; Kerstin Höner zu Bentrup; Daniel J. Hassett; Barbara H. Iglewski; Karin Sauer; Michael J. Schurr

AlgR controls numerous virulence factors in Pseudomonas aeruginosa, including alginate, hydrogen cyanide production, and type IV pilus-mediated twitching motility. In this study, the role of AlgR in biofilms was examined in continuous-flow and static biofilm assays. Strain PSL317 (DeltaalgR) produced one-third the biofilm biomass of wild-type strain PAO1. Complementation with algR, but not fimTU-pilVWXY1Y2E, restored PSL317 to the wild-type biofilm phenotype. Comparisons of the transcriptional profiles of biofilm-grown PAO1 and PSL317 revealed that a number of quorum-sensing genes were upregulated in the algR deletion strain. Measurement of rhlA::lacZ and rhlI::lacZ promoter fusions confirmed the transcriptional profiling data when PSL317 was grown as a biofilm, but not planktonically. Increased amounts of rhamnolipids and N-butyryl homoserine lactone were detected in the biofilm effluent but not the planktonic supernatants of the algR mutant. Additionally, AlgR specifically bound to the rhlA and rhlI promoters in mobility shift assays. Moreover, PAO1 containing a chromosomal mutated AlgR binding site in its rhlI promoter formed biofilms and produced increased amounts of rhamnolipids similarly to the algR deletion strain. These observations indicate that AlgR specifically represses the Rhl quorum-sensing system during biofilm growth and that such repression is necessary for normal biofilm development. These data also suggest that AlgR may control transcription in a contact-dependent or biofilm-specific manner.


PLOS ONE | 2010

Immunospecific Responses to Bacterial Elongation Factor Tu during Burkholderia Infection and Immunization

Wildaliz Nieves; Julie Heang; Saja Asakrah; Kerstin Höner zu Bentrup; Chad J. Roy; Lisa A. Morici

Burkholderia pseudomallei is the etiological agent of melioidosis, a disease endemic in parts of Southeast Asia and Northern Australia. Currently there is no licensed vaccine against infection with this biological threat agent. In this study, we employed an immunoproteomic approach and identified bacterial Elongation factor-Tu (EF-Tu) as a potential vaccine antigen. EF-Tu is membrane-associated, secreted in outer membrane vesicles (OMVs), and immunogenic during Burkholderia infection in the murine model of melioidosis. Active immunization with EF-Tu induced antigen-specific antibody and cell-mediated immune responses in mice. Mucosal immunization with EF-Tu also reduced lung bacterial loads in mice challenged with aerosolized B. thailandensis. Our data support the utility of EF-Tu as a novel vaccine immunogen against bacterial infection.


Journal of Neuroscience Methods | 2008

Closing the phenotypic gap between transformed neuronal cell lines in culture and untransformed neurons

Tereance A. Myers; Cheryl A. Nickerson; Deepak Kaushal; C. Mark Ott; Kerstin Höner zu Bentrup; Rajee Ramamurthy; Mayra Nelman-Gonzalez; Duane L. Pierson; Mario T. Philipp

Studies of neuronal dysfunction in the central nervous system (CNS) are frequently limited by the failure of primary neurons to propagate in vitro. Neuronal cell lines can be substituted for primary cells but they often misrepresent normal conditions. We hypothesized that a three-dimensional (3D) cell culture system would drive the phenotype of transformed neurons closer to that of untransformed cells, as has been demonstrated in non-neuronal cell lines. In our studies comparing 3D versus two-dimensional (2D) culture, neuronal SH-SY5Y (SY) cells underwent distinct morphological changes combined with a significant drop in their rate of cell division. Expression of the proto-oncogene N-myc and the RNA-binding protein HuD was decreased in 3D culture as compared to standard 2D conditions. We observed a decline in the anti-apoptotic protein Bcl-2 in 3D culture, coupled with increased expression of the pro-apoptotic proteins Bax and Bak. Moreover, thapsigargin (TG)-induced apoptosis was enhanced in the 3D cells. Microarray analysis demonstrated significantly differing mRNA levels for over 700 genes in the cells of the two culture types, and indicated that alterations in the G1/S cell-cycle progression contributed to the diminished doubling rate in the 3D-cultured SY cells. These results demonstrate that a 3D culture approach narrows the phenotypic gap between neuronal cell lines and primary neurons. The resulting cells may readily be used for in vitro research of neuronal pathogenesis.


Nucleic Acids Research | 2016

Global transcript structure resolution of high gene density genomes through multi-platform data integration

Tina O'Grady; Xia Wang; Kerstin Höner zu Bentrup; Melody Baddoo; Monica Concha; Erik K. Flemington

Annotation of herpesvirus genomes has traditionally been undertaken through the detection of open reading frames and other genomic motifs, supplemented with sequencing of individual cDNAs. Second generation sequencing and high-density microarray studies have revealed vastly greater herpesvirus transcriptome complexity than is captured by existing annotation. The pervasive nature of overlapping transcription throughout herpesvirus genomes, however, poses substantial problems in resolving transcript structures using these methods alone. We present an approach that combines the unique attributes of Pacific Biosciences Iso-Seq long-read, Illumina short-read and deepCAGE (Cap Analysis of Gene Expression) sequencing to globally resolve polyadenylated isoform structures in replicating Epstein-Barr virus (EBV). Our method, Transcriptome Resolution through Integration of Multi-platform Data (TRIMD), identifies nearly 300 novel EBV transcripts, quadrupling the size of the annotated viral transcriptome. These findings illustrate an array of mechanisms through which EBV achieves functional diversity in its relatively small, compact genome including programmed alternative splicing (e.g. across the IR1 repeats), alternative promoter usage by LMP2 and other latency-associated transcripts, intergenic splicing at the BZLF2 locus, and antisense transcription and pervasive readthrough transcription throughout the genome.


PLOS ONE | 2013

Specific Increase in MDR1 Mediated Drug-Efflux in Human Brain Endothelial Cells following Co-Exposure to HIV-1 and Saquinavir

Upal Roy; Christine Bulot; Kerstin Höner zu Bentrup; Debasis Mondal

Persistence of HIV-1 reservoirs within the Central Nervous System (CNS) remains a significant challenge to the efficacy of potent anti-HIV-1 drugs. The primary human Brain Microvascular Endothelial Cells (HBMVEC) constitutes the Blood Brain Barrier (BBB) which interferes with anti-HIV drug delivery into the CNS. The ATP binding cassette (ABC) transporters expressed on HBMVEC can efflux HIV-1 protease inhibitors (HPI), enabling the persistence of HIV-1 in CNS. Constitutive low level expression of several ABC-transporters, such as MDR1 (a.k.a. P-gp) and MRPs are documented in HBMVEC. Although it is recognized that inflammatory cytokines and exposure to xenobiotic drug substrates (e.g HPI) can augment the expression of these transporters, it is not known whether concomitant exposure to virus and anti-retroviral drugs can increase drug-efflux functions in HBMVEC. Our in vitro studies showed that exposure of HBMVEC to HIV-1 significantly up-regulates both MDR1 gene expression and protein levels; however, no significant increases in either MRP-1 or MRP-2 were observed. Furthermore, calcein-AM dye-efflux assays using HBMVEC showed that, compared to virus exposure alone, the MDR1 mediated drug-efflux function was significantly induced following concomitant exposure to both HIV-1 and saquinavir (SQV). This increase in MDR1 mediated drug-efflux was further substantiated via increased intracellular retention of radiolabeled [3H-] SQV. The crucial role of MDR1 in 3H-SQV efflux from HBMVEC was further confirmed by using both a MDR1 specific blocker (PSC-833) and MDR1 specific siRNAs. Therefore, MDR1 specific drug-efflux function increases in HBMVEC following co-exposure to HIV-1 and SQV which can reduce the penetration of HPIs into the infected brain reservoirs of HIV-1. A targeted suppression of MDR1 in the BBB may thus provide a novel strategy to suppress residual viral replication in the CNS, by augmenting the therapeutic efficacy of HAART drugs.

Collaboration


Dive into the Kerstin Höner zu Bentrup's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice Dohnalkova

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge