Kerstin Richter
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kerstin Richter.
Journal of Clinical Investigation | 2002
Peer Wulff; Volker Vallon; Dan Yang Huang; Harald Völkl; Fang Yu; Kerstin Richter; Martina Jansen; Michaela Schlünz; Karin Klingel; Johannes Loffing; Gunther Kauselmann; Michael R. Bösl; Florian Lang; Dietmar Kuhl
The serum- and glucocorticoid-regulated kinase (sgk1) is induced by mineralocorticoids and, in turn, upregulates heterologously expressed renal epithelial Na(+) channel (ENaC) activity in Xenopus oocytes. Accordingly, Sgk1 is considered to mediate the mineralocorticoid stimulation of renal ENaC activity and antinatriuresis. Here we show that at standard NaCl intake, renal water and electrolyte excretion is indistinguishable in sgk1-knockout (sgk1(-/-)) mice and wild-type (sgk1(+/+)) mice. In contrast, dietary NaCl restriction reveals an impaired ability of sgk1(-/-) mice to adequately decrease Na(+) excretion despite increases in plasma aldosterone levels and proximal-tubular Na(+) and fluid reabsorption, as well as decreases in blood pressure and glomerular filtration rate.
Journal of Biological Chemistry | 2006
Satish A. Eraly; Volker Vallon; Duke A. Vaughn; Jon A. Gangoiti; Kerstin Richter; Megha Nagle; Julio C. Monte; Timo Rieg; David M. Truong; Jeffrey M. Long; Bruce Barshop; Gregory Kaler; Sanjay K. Nigam
The “classical” organic anion secretory pathway of the renal proximal tubule is critical for the renal excretion of the prototypic organic anion, para-aminohippurate, as well as of a large number of commonly prescribed drugs among other significant substrates. Organic anion transporter 1 (OAT1), originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J. G., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471–6478), has physiological properties consistent with a role in this pathway. However, several other transporters (e.g. OAT2, OAT3, and MRP1) have also been proposed as important PAH transporters on the basis of in vitro studies; therefore, the relative contribution of OAT1 has remained unclear. We have now generated a colony of OAT1 knock-out mice, permitting elucidation of the role of OAT1 in the context of these other potentially functionally redundant transporters. We find that the knock-out mice manifest a profound loss of organic anion transport (e.g. para-aminohippurate) both ex vivo (in isolated renal slices) as well as in vivo (as indicated by loss of renal secretion). In the case of the organic anion, furosemide, loss of renal secretion in the knock-out results in impaired diuretic responsiveness to this drug. These results indicate a critical role for OAT1 in the functioning of the classical pathway. In addition, we have determined the levels of ∼60 endogenous organic anions in the plasma and urine of wild-type and knock-out mice. This has led to identification of several compounds with significantly higher plasma concentrations and/or lower urinary concentrations in knock-out mice, suggesting the involvement of OAT1 in their renal secretion. We have also demonstrated in xenopus oocytes that some of these compounds interact with OAT1 in vitro. Thus, these latter compounds might represent physiological substrates of OAT1.
Journal of The American Society of Nephrology | 2004
Dan Yang Huang; Peer Wulff; Harald Völkl; Johannes Loffing; Kerstin Richter; Dietmar Kuhl; Florian Lang; Volker Vallon
Serum- and glucocorticoid-regulated kinase 1 (Sgk1) contributes to Na+ reabsorption in the aldosterone-sensitive distal nephron. Sgk1-knockout (sgk1-/-) and littermate wild-type mice (sgk1+/+) were used to test the importance of Sgk1 in renal elimination of K+ . Intravenous application of K+ load under anesthesia increased plasma K+ concentration by 1.3 to 1.4 mM in both sgk1-/- (n = 6) and sgkl+/+ (n = 7) mice. However, the increase of absolute and fractional renal K+ excretion observed in sgk1+/+ was significantly blunted in sgk1-/- animals. Both groups of mice decreased or increased renal K+ excretion to a similar extent after a low (<0.03%) or high (5%) K+ diet for 6 d, respectively. In sgk1+/+, plasma K+ concentration was not significantly modified by either high or low K+ diet. In sgk1-/-, however, high K+ diet enhanced plasma K+ concentration by about 1.6 mM, despite an excessive increase of plasma aldosterone concentration reaching values about sixfold higher than in sgk1+/+. Electrophysiological and immunohistochemical studies under high K+ diet indicated that reduced epithelial Na+ channel ENaC and/or Na+/K+-ATPase activity in the aldosterone-sensitive distal nephron accounted for the impaired response in sgk1-/- and that an enhanced apical abundance of renal outer medullary K+ channel ROMK partly compensated for the defect. The acute and chronic regulation of renal K+ elimination involves Sgk1.
Journal of Clinical Investigation | 2006
Scott C. Thomson; Aihua Deng; Lucinda M. Wead; Kerstin Richter; Roland C. Blantz; Volker Vallon
We set out to confirm the long-held, but untested, assumption that dietary salt affects proximal reabsorption through reciprocal effects on the renin-angiotensin system in a way that facilitates salt homeostasis. Wistar rats were fed standard or high-salt diets for 7 days and then subjected to renal micropuncture for determination of single-nephron GFR (SNGFR) and proximal reabsorption. The tubuloglomerular feedback (TGF) system was used as a tool to manipulate SNGFR in order to distinguish primary changes in net proximal reabsorption (Jprox) from changes due to glomerulotubular balance. The influence of Ang II over Jprox was determined by the sensitivity of Jprox to the AT1 receptor antagonist, losartan. Plasma, whole kidneys, and fluid from midproximal tubules were assayed for Ang II content by radioimmunoassay. In rats on the standard diet, losartan reduced Jprox by 25% and reduced the maximum range of the TGF response by 50%. The high-salt diet suppressed plasma and whole-kidney Ang II levels. But the high-salt diet failed to reduce the impact of losartan on Jprox or the TGF response and actually caused tubular fluid Ang II content to increase. The persistent effect of Ang II on Jprox prevented a major rise in late proximal flow rate in response to the high-salt diet. These observations challenge the traditional model and indicate that the role of proximal tubular Ang II in salt-replete rats is to stabilize nephron function rather than to contribute to salt homeostasis.
Journal of The American Society of Nephrology | 2002
Volker Vallon; Dan-Yang Huang; Aihua Deng; Kerstin Richter; Roland C. Blantz; Scott C. Thomson
GFR varies inversely with dietary NaCl in patients with early type I diabetes and in streptozotocin (STZ)-diabetic rats. To explain this paradox within the laws of physiology, it was hypothesized that it results from heightened sensitivity of the diabetic proximal tubule to dietary salt because changes in proximal reabsorption (Jprox) elicit reciprocal adjustments in GFR through the normal actions of tubuloglomerular feedback (TGF). Micropuncture was done in rats after 5 wk of moderately hyperglycemic STZ-diabetes and 1 wk of different NaCl diets. First, single-nephron GFR (SNGFR) and early distal tubular Na(+), Cl(-) and K(+) concentration (representing the TGF signal) were measured by collecting from early distal nephrons. In nondiabetics, dietary salt did not affect SNGFR or the TGF signal. In diabetics, the TGF signal varied directly with dietary salt while SNGFR varied inversely with dietary salt. Next, Jprox was measured by collecting from late proximal tubules. To control for different SNGFR, SNGFR was manipulated by perfusing Henles loop to alter TGF activity. Controlling for SNGFR, dietary salt did not affect Jprox in nondiabetics but exerted a major inverse impact on Jprox in diabetics. In conclusion, normal rats acclimate to dietary NaCl by primarily adjusting transport downstream of the macula densa. In contrast, diabetes renders reabsorption in the proximal tubule sensitive to dietary NaCl with subsequent effects on the TGF signal. This explains the paradoxical effect of dietary NaCl on GFR in early diabetes.
Behavioural Brain Research | 2003
Undine E. Lang; Florian Lang; Kerstin Richter; Volker Vallon; Hans-Peter Lipp; Jurgen Schnermann; David P. Wolfer
Several lines of evidence point to the involvement of adenosine in the regulation of important central mechanisms such as cognition, arousal, aggression and anxiety. In order to elucidate the involvement of the adenosine A1 receptor (A1AR) in spatial learning and the control of exploratory behaviour, we assessed A1AR knockout mice (A1AR-/-) and their wild-type littermates (A1AR+/+) in a place navigation task in the water maze and in a battery of forced and free exploration tests. In the water maze, A1AR-/- mice showed normal escape latencies and were indistinguishable from controls with respect to measures of spatial performance during both training and probe trial. But despite normal performance they showed increased wall hugging, most prominently after the relocation of the goal platform for reversal training. Quantitative analysis of strategy choices indicated that wall hugging was increased mainly at the expense of chaining and passive floating, whereas the frequency of trials characterised as direct swims or focal searching was normal in A1AR-/- mice. These results indicate intact spatial cognition, but mildly altered emotional reactions to the water maze environment. In line with this interpretation, A1AR-/- mice showed normal levels and patterns of activity, but a mild increase of some measures of anxiety in our battery of forced and free exploration paradigms. These results are in line with findings published using a genetically similar line, but demonstrate that the magnitude of the changes and the range of affected behavioural measures may vary considerably depending on the environmental conditions during testing.
Journal of Cardiovascular Pharmacology | 1998
Volker Vallon; Nils Heyne; Kerstin Richter; Mahesh C. Khosla; Klaus Fechter
Exogenous angiotensin (Ang) 1-7 affects renal function, but the receptor(s) involved in this response remain(s) to be determined. In an in vitro preparation of proximal tubules, Ang 1-7 was shown to act on Ang II AT1 receptors (minor component), but also on a non-AT1, non-AT2 Ang receptor (major component) to inhibit reabsorption. In brain, Ang 1-7 also exerts effects mediated by a non-AT1, non-AT2 binding site; these effects are inhibited, however, by the angiotensin analog [7-D-Ala]-Ang 1-7. Therefore we tested the effect of Ang II AT1-receptor antagonist losartan and [7-D-Ala]-Ang 1-7 on the renal response to exogenous Ang 1-7 in standard renal-clearance experiments in the anesthetized rat. We found that Ang 1-7 (100 pmol/kg/min, i.a.) increased glomerular filtration rate (GFR), urinary flow rate (UV), and urinary sodium excretion (UNaV) without affecting mean arterial blood pressure (MAP) or urinary potassium excretion (UKV), confirming previous reports. Losartan (10 mg/kg, i.v.) blocked the pressor effect of exogenous Ang II (100 pmol/kg/min, i.a.), but did not significantly affect the renal response to Ang 1-7. Conversely, pretreatment with [7-D-Ala]-Ang 1-7 (5 nmol/kg/min) did not affect the pressor effect of Ang II, but abolished the renal response to Ang 1-7. Application of [7-D-Ala]-Ang 1-7 in the absence of exogenous Ang 1-7 did not alter MAP or GFR, but increased UNaV (by 52%). Our data indicate that similar to the response in brain, the renal response to exogenous Ang 1-7 may be mediated predominantly by a distinct non-AT1 binding site, which is sensitive to blockade by [7-D-Ala]-Ang 1-7. Furthermore, ambient endogenous Ang 1-7 acting on this distinct binding site may not contribute significantly to control of MAP or GFR, but exerts an antinatriuretic influence in the anesthetized rat.
Kidney & Blood Pressure Research | 1997
Volker Vallon; Kerstin Richter; Nils Heyne; Hartmut Osswald
Cleavage of the C-terminal tripeptide of angiotensin I (Ang I) by neutral endopeptidase 24.11 releases angiotensin 1-7 (Ang 1-7). Because Ang I and neutral endopeptidase 24.11 are present in proximal tubular fluid and brush border, respectively, Ang 1-7 could be released into proximal tubular fluid to affect nephron function. Therefore, we studied the effect of intratubular Ang 1-7 (10(-12) to 10(-8) M) on nephron function employing in vivo renal micropuncture in inactin-anesthetized Munich-Wistar-Frömter rats. We observed that: (i) Intratubular application of Ang 1-7 for 3, 15, or 30 min did not affect reabsorption in the microperfused proximal convoluted tubule determined as net fluid reabsorption. (ii) During perfusion of Henles loop for 15 min with artificial tubular fluid (time control), we observed a decline in fluid, potassium and sodium reabsorption by 20, 18 and 5%, respectively. A similar decline in reabsorption was seen with intratubular application of Ang 1-7 in a concentration of 10(-12) or 10(-10) M. In contrast, intratubular application of Ang 1-7 in a concentration of 10(-8) M increased fluid, potassium and sodium reabsorption in that nephron segment by 11, 9 and 3%, respectively. The latter response was completely abolished by AT1 angiotensin II receptor antagonist losartan (10[-6] M). (iii) Intratubular application of Ang 1-7 did not affect net sodium, potassium, or fluid reabsorption in the distal tubule. (iv) TGF response assessed by measuring proximal tubular stop-flow pressure or single nephron filtration rate during orthograde open-loop perfusion of Henles loop was not significantly altered by intratubular application of Ang 1-7. These findings show that intratubular application of Ang 1-7 in concentrations which possibly cover the physiological range does not significantly alter (i) tubular reabsorption in proximal convoluted or distal tubule, or (ii) TGF response. Intratubular Ang 1-7 at a concentration of 10(-8) M appears to increase reabsorption in Henles loop by an AT1 angiotensin II receptor-mediated mechanism, the physiological relevance of which remains to be established.
Kidney & Blood Pressure Research | 2003
C. Birk; Kerstin Richter; D.Y. Huang; C. Piesch; Gerd Luippold; Volker Vallon
Glomerular filtration rate (GFR) is inversely and thus paradoxically related to dietary NaCl intake in rats and patients with early type 1 diabetes mellitus (DM). Enhanced sensitivity of proximal reabsorption to NaCl diet inducing secondary adaptations in GFR through actions of tubuloglomerular feedback causes this salt paradox. We studied the role of renal nerves for the salt paradox in rats with streptozotocin (STZ)-induced DM since a regulatory influence of renal nerves on proximal reabsorption is well established. The left kidney (LK) was denervated before induction of STZ-DM. Subsequently, the normal diet was continued or a low NaCl diet was initiated and 1 week later animals were prepared for clearance experiments under anesthesia including ureter catheterization to measure GFR for each kidney. In diabetic rats, the right innervated as well as the left denervated kidney showed higher values for GFR and kidney weight in animals on a low versus a normal NaCl diet indicating that the salt paradox occurs independent of renal innervation. In addition, evidence is provided that the renal nerves of non-diabetic rats do not contribute to renal Na+ retention during dietary NaCl restriction but modulate renal hemodynamics and kidney weight under these conditions.
Naunyn-schmiedebergs Archives of Pharmacology | 1998
Volker Vallon; Kerstin Richter; Hartmut Osswald; Edgar Schömig; Bernd Mühlbauer
We previously described that 1,1’-diisopropyl-2,4’-cyanine (disprocynium24, DP24) exerts an eukaliuric diuresis and natriuresis in the anesthetized rat. The purpose of the present study was to localize the tubular site of action of DP24. Employing micropuncture experiments in anesthetized rats, we first tested the effect of systemic application of DP24 (300 µg/kg+300 µg/kg h, i.v.) on whole kidney excretion rates as well as on fluid, sodium and potassium ion delivery to the early distal tubule (VED, Na+ED, K+ED). It was found that the eukaliuric diuresis and natriuresis in response to DP24 was accompanied by a substantial increase in VED and Na+ED, suggesting a predominant tubular site of action upstream to the early distal tubule, most likely in the proximal tubule. DP24 caused a comparable fractional, although minor absolute increase in K+ED as compared to Na+ED. Second, application of DP24 into the first surface loop of the proximal tubule significantly increased VED and Na+ED at a concentration of about 10–7 M, indicating that DP24 may act from the intratubular site. Third, microperfusion of tubular segments revealed that effects of DP24 on the proximal convoluted tubule and the loop of Henle accounted for about 70 and 30%, respectively, of its diuretic and natriuretic action upstream to the early distal tubule. With regard to the loop of Henle, the quantitative effect of DP24 on fluid and Na+ reabsorption proposed a predominant effect on the straight part of the proximal tubule rather than the thick ascending limb. Intratubular DP24 did not affect reabsorption in the distal tubule. In summary, the present findings indicate that: (1) the diuretic and natriuretic effect of DP24 resides predominantly in the proximal tubule, and (2) DP24 may act from the intratubular site. Since DP24 increased VED and Na+ED without apparently affecting sodium or potassium ion transport in the distal tubule, the mechanism of the eukaliuric response remains unclear.