Kerstin Schepanski
Leibniz Association
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kerstin Schepanski.
Geophysical Research Letters | 2007
Kerstin Schepanski; Ina Tegen; B. Laurent; Bernd Heinold; Andreas Macke
We present a new dust source area map for the Sahara and Sahel region, derived from the spatiotemporal variability of composite images of Meteosat Second Generation (MSG) using the 8.7, 10.8 and 12.0 μm wavelength channels for March 2006–February 2007. Detected dust events have been compared to measured aerosol optical thickness (AOT) and horizontal visibility observations. Furthermore the monthly source area map has been compared with the Ozone Monitoring Instrument aerosol index (AI). A spatial shift of the derived frequency patterns and the local maxima of AI-values can be explained by wind-transport of airborne dust implicitly included in the AI signal. To illustrate the sensitivity of a regional model using the new dust source mask, we present a case study analysis that shows an improvement in reproducing aerosol optical thickness in comparison to the original dust source parameterization.
Journal of Geophysical Research | 2009
Kerstin Schepanski; I. Tegen; Martin C. Todd; Bernd Heinold; Gerhard Bönisch; B. Laurent; Andreas Macke
Fifteen-minute Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) infrared dust index images are used to identify dust source areas. The observations of dust source activation (DSA) are compiled in a 1° × 1° map for the Sahara and Sahel, including temporal information at 3-hourly resolution. Here we use this data set to identify the most active dust source areas and the time of day when dust source activation occurs most frequently. In the Sahara desert 65% of DSA (March 2006 to February 2008) occurs during 0600-0900 UTC, pointing toward an important role of the breakdown of the nocturnal low-level jet (LLJ) for dust mobilization. Other meteorological mechanisms may lead to dust mobilization including density currents initiated by deep convective systems which mobilize dust fronts (haboobs) occurring preferentially in the afternoon hours and cyclonic activities. The role of the nocturnal LLJ for dust mobilization in the Sahara is corroborated by regional model studies and analysis of meteorological station data.
Journal of Geophysical Research | 2013
Bernd Heinold; Peter Knippertz; John H. Marsham; Stephanie Fiedler; N. S. Dixon; Kerstin Schepanski; B. Laurent; Ina Tegen
[1] Convective cold pools and the breakdown of nocturnal low-level jets (NLLJs) are key meteorological drivers of dust emission over summertime West Africa, the world’s largest dust source. This study is the first to quantify their relative contributions and physical interrelations using objective detection algorithms and an off-line dust emission model applied to convection-permitting simulations from the Met Office Unified Model. The study period covers 25 July to 02 September 2006. All estimates may therefore vary on an interannual basis. The main conclusions are as follows: (a) approximately 40% of the dust emissions are from NLLJs, 40% from cold pools, and 20% from unidentified processes (dry convection, land-sea and mountain circulations); (b) more than half of the cold-pool emissions are linked to a newly identified mechanism where aged cold pools form a jet above the nocturnal stable layer; (c) 50% of the dust emissions occur from 1500 to 0200 LT with a minimum around sunrise and after midday, and 60% of the morning-to-noon emissions occur under clear skies, but only 10% of the afternoon-to-nighttime emissions, suggesting large biases in satellite retrievals; (d) considering precipitation and soil moisture effects, cold-pool emissions are reduced by 15%; and (e) models with parameterized convection show substantially less cold-pool emissions but have larger NLLJ contributions. The results are much more sensitive to whether convection is parameterized or explicit than to the choice of the land-surface characterization, which generally is a large source of uncertainty. This study demonstrates the need of realistically representing moist convection and stable nighttime conditions for dust modeling. Citation: Heinold, B., P. Knippertz, J. H. Marsham, S. Fiedler, N. S. Dixon, K. Schepanski, B. Laurent, and I. Tegen (2013), The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: Estimates from convection-permitting simulations, J. Geophys. Res. Atmos., 118, 4385–4400, doi:10.1002/jgrd.50402.
Tellus B | 2009
Peter Knippertz; Albert Ansmann; Dietrich Althausen; Detlef Müller; Matthias Tesche; Eike Bierwirth; Tilman Dinter; T. Müller; Wolfgang von Hoyningen-Huene; Kerstin Schepanski; Manfred Wendisch; Bernd Heinold; Konrad Kandler; Andreas Petzold; L. Schütz; Ina Tegen
The SAMUM field campaign in southern Morocco in May/June 2006 provides valuable data to study the emission, and the horizontal and vertical transports of mineral dust in the Northern Sahara. Radiosonde and lidar observations show differential advection of air masses with different characteristics during stable nighttime conditions and up to 5-km deep vertical mixing in the strongly convective boundary layer during the day. Lagrangian and synoptic analyses of selected dust periods point to a topographic channel from western Tunisia to central Algeria as a dust source region. Significant emission events are related to cold surges from the Mediterranean in association with eastward passing upper-level waves and lee cyclogeneses south of the Atlas Mountains. Other relevant events are local emissions under a distinct cut-off low over northwestern Africa and gust fronts associated with dry thunderstorms over the Malian and Algerian Sahara. The latter are badly represented in analyses from the European Centre for Medium–Range Weather Forecasts and in a regional dust model, most likely due to problems with moist convective dynamics and a lack of observations in this region. This aspect needs further study. The meteorological source identification is consistent with estimates of optical and mineralogical properties of dust samples.
Journal of Geophysical Research | 2013
Sabine Fiedler; Kerstin Schepanski; Bernd Heinold; Peter Knippertz; Ina Tegen
[1] This study presents the first climatology for the dust emission amount associated with Nocturnal Low-Level Jets (NLLJs) in North Africa. These wind speed maxima near the top of the nocturnal boundary layer can generate near-surface peak winds due to shear-driven turbulence in the course of the night and the NLLJ breakdown during the following morning. The associated increase in the near-surface wind speed is a driver for mineral dust emission. A new detection algorithm for NLLJs is presented and used for a statistical assessment of NLLJs in 32 years of ERA-Interim reanalysis from the European Centre for Medium-Range Weather Forecasts. NLLJs occur in 29% of the nights in the annual and spatial mean. The NLLJ climatology shows a distinct annual cycle with marked regional differences. Maxima of up to 80% NLLJ frequency are found where low-level baroclinicity and orographic channels cause favorable conditions, e.g., over the Bodélé Depression, Chad, for November–February and along the West Saharan and Mauritanian coast for April–September. Downward mixing of NLLJ momentum to the surface causes 15% of mineral dust emission in the annual and spatial mean and can be associated with up to 60% of the total dust amount in specific areas, e.g., the Bodélé Depression and south of the Hoggar-Tibesti Channel. The sharp diurnal cycle underlines the importance of using wind speed information with high temporal resolution as driving fields for dust emission models. Citation: Fiedler, S., K. Schepanski, B. Heinold, P. Knippertz, and I. Tegen (2013), Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission, J. Geophys. Res. Atmos., 118, 6100-6121, doi:10.1002/jgrd.50394
Proceedings of the National Academy of Sciences of the United States of America | 2009
Richard Washington; C. Bouet; Guy Cautenet; Elisabeth Mackenzie; Ian Ashpole; Sebastian Engelstaedter; Gil Lizcano; Gideon M. Henderson; Kerstin Schepanski; I. Tegen
Dust plays a vital role in climate and biophysical feedbacks in the Earth system. One source of dust, the Bodélé Depression in Chad, is estimated to produce about half the mineral aerosols emitted from the Sahara, which is the worlds largest source. By using a variety of new remote sensing data, regional modeling, trajectory models, chemical analyses of dust, and future climate simulations, we investigate the current and past sensitivity of the Bodélé. We show that minor adjustments to small features of the atmospheric circulation, such as the Bodélé Low-Level Jet, could profoundly alter the behavior of this feature. Dust production during the mid-Holocene ceased completely from this key source region. Although subject to a great deal of uncertainty, some simulations of the 21st century indicate the potential for a substantial increase in dust production by the end of the century in comparison with current values.
Tellus B | 2009
Bernd Heinold; Ina Tegen; Michael Esselborn; Konrad Kandler; Peter Knippertz; Detlef Müller; A. Schladitz; Matthias Tesche; Bernadett Weinzierl; Albert Ansmann; Dietrich Althausen; B. Laurent; Andreas Massling; T. Müller; Andreas Petzold; Kerstin Schepanski; Alfred Wiedensohler
The regional dust model system LM-MUSCAT-DES was developed in the framework of the SAMUM project. Using the unique comprehensive data set of near-source dust properties during the 2006SAMUMfield campaign, the performance of the model system is evaluated for two time periods in May and June 2006. Dust optical thicknesses, number size distributions and the position of the maximum dust extinction in the vertical profiles agree well with the observations. However, the spatio-temporal evolution of the dust plumes is not always reproduced due to inaccuracies in the dust source placement by the model. While simulated winds and dust distributions are well matched for dust events caused by dry synoptic-scale dynamics, they are often misrepresented when dust emissions are caused by moist convection or influenced by small-scale topography that is not resolved by the model. In contrast to long-range dust transport, in the vicinity of source regions the model performance strongly depends on the correct prediction of the exact location of sources. Insufficiently resolved vertical grid spacing causes the absence of inversions in the model vertical profiles and likely explains the absence of the observed sharply defined dust layers.
Eos, Transactions American Geophysical Union | 2011
Gregory S. Okin; Joanna E. Bullard; Richard L. Reynolds; John Andrew C Ballantine; Kerstin Schepanski; Martin C. Todd; Jayne Belnap; Matthew C. Baddock; Thomas E. Gill; Mark E. Miller
Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored.
Bulletin of the American Meteorological Society | 2017
Bernadett Weinzierl; A. Ansmann; Joseph M. Prospero; Dietrich Althausen; Nathalie Benker; F. Chouza; Maximilian Dollner; David Farrell; W. K. Fomba; Volker Freudenthaler; Josef Gasteiger; S. Gross; Moritz Haarig; Bernd Heinold; Konrad Kandler; Thomas Kristensen; Olga L. Mayol-Bracero; T. Müller; Oliver Reitebuch; Daniel Sauer; Andreas Schäfler; Kerstin Schepanski; A. Spanu; Ina Tegen; C. Toledano; Adrian Walser
AbstractNorth Africa is the world’s largest source of dust, a large part of which is transported across the Atlantic to the Caribbean and beyond where it can impact radiation and clouds. Many aspects of this transport and its climate effects remain speculative. The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE; www.pa.op.dlr.de/saltrace) linked ground-based and airborne measurements with remote sensing and modeling techniques to address these issues in a program that took place in 2013/14. Specific objectives were to 1) characterize the chemical, microphysical, and optical properties of dust in the Caribbean, 2) quantify the impact of physical and chemical changes (“aging”) on the radiation budget and cloud microphysical processes, 3) investigate the meteorological context of transatlantic dust transport, and 4) assess the roles of removal processes during transport.SALTRACE was a German-led initiative involving scientists from Europe, Cabo Verde, the Caribbean, a...
Journal of Geophysical Research | 2009
Carolina Cavazos; Martin C. Todd; Kerstin Schepanski
The Sahara desert is the worlds primary source of mineral dust aerosols and is known to be an important but poorly understood component of the climate system. Climate models which incorporate dust modules have the potential to improve our understanding of the climate impacts of dust. In this study, the performance of the Regional Climate Model version 3 (RegCM3) with an active dust scheme is evaluated, using a major dust event of 6?11 March 2006 as a test case. To account for the distribution of preferential dust source regions, soil texture characteristics were modified in dust source regions identified from long-term SEVIRI satellite data. The dust event was associated with a pronounced cold outbreak of midlatitude air over the northern Sahara which produced anomalously strong northerly winds, which propagated from west to east over the Sahara during the study period. This resulted in dust mobilization from multiple dust sources across the domain. RegCM3 represents the space/time structure of near-surface meteorology well, although surface winds are underestimated in absolute terms. The experiment in which soils are modified provides a better representation of local dust sources and emission and resulting atmospheric optical thickness (AOT). In this experiment, model simulated dust flux exported from the Sahara to the Sahel and the tropical east Atlantic is estimated as 1.9 Tg d-1. The dust event had a profound impact on the surface solar radiation budget of ~-140 W m-2 per unit AOT (domain average). The shortwave radiative effect at the top of the atmosphere is~-10 W m-2 per unit AOT over the study domain. However, this is strongly dependent on surface albedo. The results also highlight how errors in model simulated circulation lead to errors in the position of the dust plume.