Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John H. Marsham is active.

Publication


Featured researches published by John H. Marsham.


Journal of Geophysical Research | 2008

Uplift of Saharan dust south of the intertropical discontinuity

John H. Marsham; Douglas J. Parker; Christian M. Grams; Christopher M. Taylor; James M. Haywood

In situ observations from a flight made during the Geostationary Earth Radiation Budget Intercomparison of Longwave and Shortwave Radiation (GERBILS) field campaign (June 2007) show significant dust uplift into the monsoon flow immediately south of the intertropical discontinuity in the western Sahara. Dust loadings were highest in the moist monsoon air and the observations are consistent with dust uplift by the nocturnal monsoon winds. There is some evidence that cold pools within the monsoon flow contributed to the dust uplift: regions of elevated dust, water vapor, and ozone within the monsoon air are consistent with precipitation cooling and moistening air from upper levels and the resultant dusty cold pools propagating northward. However, only southward propagating cold pool outflows could be observed in satellite imagery. Using European Centre for Medium-Range Weather Forecasts analyses and satellite data, it is shown that the asymmetry in the seasonal dust cycle is closely related to the downdraft convective available potential energy (DCAPE) from convective storms. There is both more dust and more DCAPE during monsoon onset than during retreat. The larger DCAPE values during monsoon onset, as well as the stronger nocturnal monsoon flow and the stronger heat trough circulation, are expected to contribute to the higher dust loadings at this time. Both the monsoon flow and cold pool outflows within it result in dust uplift in the western Sahara during the monsoon onset, which is when the maximum dust uplift occurs. For dust modeling, this shows the importance of accurately modeling not only the monsoon flow itself but also deep convection and cold pools.


Bulletin of the American Meteorological Society | 2007

The Convective Storm Initiation Project

K. A. Browning; Alan M. Blyth; Peter A. Clark; U. Corsmeier; Cyril J. Morcrette; Judith L. Agnew; Sue P. Ballard; Dave Bamber; Christian Barthlott; Lindsay J. Bennett; Karl M. Beswick; Mark Bitter; K. E. Bozier; Barbara J. Brooks; C. G. Collier; Fay Davies; Bernhard Deny; Mark Dixon; Thomas Feuerle; Richard M. Forbes; Catherine Gaffard; Malcolm D. Gray; R. Hankers; Tim J. Hewison; N. Kalthoff; S. Khodayar; M. Kohler; C. Kottmeier; Stephan Kraut; M. Kunz

The Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is to compare the results of the very high resolution Met Office weather forecasting model with detailed observations of the early stages of convective clouds and to use the newly gained understanding to improve the predictions of the model. A large array of ground-based instruments plus two instrumented aircraft, from the U.K. National Centre for Atmospheric Science (NCAS) and the German Institute for Meteorology and Climate Research (IMK), Karlsruhe, were deployed in southern England, over an area centered on the meteorological radars at Chilbolton, during the summers of 2004 and 2005. In addition to a variety ofground-based remote-sensing instruments, numerous rawinsondes were released at one- to two-hourly intervals from six closely spaced sites. The Met Office weather radar network and Meteosat satellite imagery were used to provide context for the observations made by the instruments deployed during CSIP. This article presents an overview of the CSIP field campaign and examples from CSIP of the types of convective initiation phenomena that are typical in the United Kingdom. It shows the way in which certain kinds of observational data are able to reveal these phenomena and gives an explanation of how the analyses of data from the field campaign will be used in the development of an improved very high resolution NWP model for operational use.


Journal of Geophysical Research | 2013

The role of deep convection and nocturnal low‐level jets for dust emission in summertime West Africa: Estimates from convection‐permitting simulations

Bernd Heinold; Peter Knippertz; John H. Marsham; Stephanie Fiedler; N. S. Dixon; Kerstin Schepanski; B. Laurent; Ina Tegen

[1] Convective cold pools and the breakdown of nocturnal low-level jets (NLLJs) are key meteorological drivers of dust emission over summertime West Africa, the world’s largest dust source. This study is the first to quantify their relative contributions and physical interrelations using objective detection algorithms and an off-line dust emission model applied to convection-permitting simulations from the Met Office Unified Model. The study period covers 25 July to 02 September 2006. All estimates may therefore vary on an interannual basis. The main conclusions are as follows: (a) approximately 40% of the dust emissions are from NLLJs, 40% from cold pools, and 20% from unidentified processes (dry convection, land-sea and mountain circulations); (b) more than half of the cold-pool emissions are linked to a newly identified mechanism where aged cold pools form a jet above the nocturnal stable layer; (c) 50% of the dust emissions occur from 1500 to 0200 LT with a minimum around sunrise and after midday, and 60% of the morning-to-noon emissions occur under clear skies, but only 10% of the afternoon-to-nighttime emissions, suggesting large biases in satellite retrievals; (d) considering precipitation and soil moisture effects, cold-pool emissions are reduced by 15%; and (e) models with parameterized convection show substantially less cold-pool emissions but have larger NLLJ contributions. The results are much more sensitive to whether convection is parameterized or explicit than to the choice of the land-surface characterization, which generally is a large source of uncertainty. This study demonstrates the need of realistically representing moist convection and stable nighttime conditions for dust modeling. Citation: Heinold, B., P. Knippertz, J. H. Marsham, S. Fiedler, N. S. Dixon, K. Schepanski, B. Laurent, and I. Tegen (2013), The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: Estimates from convection-permitting simulations, J. Geophys. Res. Atmos., 118, 4385–4400, doi:10.1002/jgrd.50402.


Journal of Geophysical Research | 2014

A seamless assessment of the role of convection in the water cycle of the west African Monsoon

Cathryn E. Birch; Douglas J. Parker; John H. Marsham; D. Copsey; Luis Garcia-Carreras

A suite of 40 day UK Met Office Unified Model simulations over West Africa during summer 2006 are analyzed to investigate the causes of biases in the position of the rainbelt and to understand the role of convection in the regional water budget. The simulations include climate, global operational, and limited area runs (grid spacings from 1.5 to 40 km), including two 12 km runs, one with parameterized and one with explicit convection. The most significant errors in the water cycle terms occur in the simulations with parameterized convection, associated with the diurnal cycle and the location of the convection. Errors in the diurnal cycle increase the northward advection of moisture out of the Sahel toward the Sahara but decrease the advection of moisture into the Sahel from further south, which limits the availability of moisture for Sahelian rainfall. These biases occur within the first 24 h, showing that they originate from the representation of fast physical processes, specifically, the convection scheme. Once these rainfall regimes have been established, the terms of the water budgets act to reinforce the biases, effectively locking the rainbelts latitude. One of the simulations with parameterized convection does, however, produce a better latitudinal distribution of rainfall because on the first day it is better able to trigger convection in the Sahel. Accurate representation of the diurnal cycle of convection and the ability to trigger convection in a high convective inhibition environment is key to capturing the water cycle of the region and will improve the representation of the West African Monsoon.


Geophysical Research Letters | 2013

Are vegetation-related roughness changes the cause of the recent decrease in dust emission from the Sahel?

S. Cowie; Peter Knippertz; John H. Marsham

[1] Since the 1980s, a dramatic downward trend in North African dustiness and transport to the tropical Atlantic Ocean has been observed by different data sets and methods. The precise causes of this trend have previously been difficult to understand, partly due to the sparse observational record. Here we show that a decrease in surface wind speeds associated with increased roughness due to more vegetation in the Sahel is the most likely cause of the observed drop in dust emission. Associated changes in turbulence and evapotranspiration, and changes in large-scale circulation, are secondary contributors. Past work has tried to explain negative correlations between North African dust and precipitation through impacts on emission thresholds due to changes in soil moisture and vegetation cover. The use of novel diagnostic tools applied here to long-term surface observations suggests that this is not the dominating effect. Our results are consistent with a recently observed global decrease in surface wind speed, known as “stilling”, and demonstrate the importance of representing vegetation-related roughness changes in models. They also offer a new mechanism of how land-use change and agriculture can impact the Sahelian climate. Citation: Cowie, S. M., P. Knippertz, and J. H. Marsham (2013), Are vegetation-related roughness changes the cause of the recent decrease in dust emission from the Sahel?, Geophys. Res. Lett., 40, 1868–1872, doi:10.1002/grl.50273


Journal of the Atmospheric Sciences | 2011

What is the Mechanism for the Modification of Convective Cloud Distributions by Land Surface–Induced Flows?

Luis Garcia-Carreras; Douglas J. Parker; John H. Marsham

Abstract The aim of this study is to determine the mechanism that modulates the initiation of convection within convergence zones caused by land surface–induced mesoscale flows. An idealized modeling approach linked quantitatively to observations of vegetation breezes over tropical Benin was used. A large-eddy model was used with a prescribed land surface describing heterogeneities between crop and forest over which vegetation breezes have been observed. The total surface fluxes were constant but the Bowen ratio varied with vegetation type. The heterogeneous land surface created temperature differences consistent with observations, which in turn forced mesoscale winds and convection at the convergence zones over the crop boundaries. At these convergence zones optimum conditions for the initiation of convection were found in the afternoon; the equivalent potential temperature was higher in the convergence zones than over anywhere else in the domain, due to reduced entrainment, and the mesoscale convergence...


Journal of Atmospheric and Oceanic Technology | 2013

The Fennec Automatic Weather Station (AWS) Network: Monitoring the Saharan Climate System

Matthew Hobby; Matthew Gascoyne; John H. Marsham; M. Bart; Christopher S. Allen; Sebastian Engelstaedter; Dieh Mohamed Fadel; Abdoulaye Gandega; Richard W. Lane; J. B. McQuaid; Bouziane Ouchene; Abdelkader Ouladichir; Douglas J. Parker; Phil Rosenberg; Mohammed Salah Ferroudj; A. Saci; Fouad Seddik; Martin C. Todd; Dan Walker; Richard Washington

TheFennecautomaticweatherstation(AWS)networkconsistsofeightstationsinstalledacrosstheSahara, with four in remote locations in the central desert, where no previous meteorological observations have existed. The AWS measures temperature, humidity, pressure, wind speed, wind direction, shortwave and longwave radiation (upwelling and downwelling), ground heat flux, and ground temperature. Data are recorded every 3 min 20 s, that is, at 3 times the temporal resolution of the World Meteorological Organization’s standard 10-min reporting for winds and wind gusts. Variations in wind speeds on shorter time scales are recorded through the use of second- and third-order moments of 1-Hz data. Using the Iridium RouterBased Unrestricted Digital Internetworking Connectivity Solutions (RUDICS) service, data are transmitted in near‐real time (1-h lag) to the United Kingdom, where calibrations are applied and data are uploaded to the Global Telecommunications System (GTS), for assimilation into forecast models. This paper describes the instrumentation used and the data available from the network. Particular focus is given to the engineering applied to the task of making measurements in this remote region and challenging climate. The communications protocol developed to operate over the Iridium RUDICS satellite service is described. Transmitting the second moment of the wind speed distribution is shown to improve estimates of the dust-generating potential of observed winds, especially for winds close to the threshold speed for dust emission of the wind speed distribution. Sources of error are discussed and some preliminary results are presented, demonstrating the system’s potential to record key features of this region.


Journal of Geophysical Research | 2011

The vertical cloud structure of the West African monsoon: A 4 year climatology using CloudSat and CALIPSO

Thorwald H. M. Stein; Douglas J. Parker; Julien Delanoë; N. S. Dixon; Robin J. Hogan; Peter Knippertz; Ross Maidment; John H. Marsham

The West African summer monsoon (WAM) is an important driver of the global climate and locally provides most of the annual rainfall. A solid climatological knowledge of the complex vertical cloud structure is invaluable to forecasters and modelers to improve the understanding of the WAM. In this paper, 4 years of data from the CloudSat profiling radar and CALIPSO are used to create a composite zonal mean vertical cloud and precipitation structure for the WAM. For the first time, the near-coincident vertical radar and lidar profiles allow for the identification of individual cloud types from optically thin cirrus and shallow cumulus to congestus and deep convection. A clear diurnal signal in zonal mean cloud structure is observed for the WAM, with deep convective activity enhanced at night producing extensive anvil and cirrus, while daytime observations show more shallow cloud and congestus. A layer of altocumulus is frequently observed over the Sahara at night and day, extending southward to the coastline, and the majority of this cloud is shown to contain supercooled liquid in the top. The occurrence of deep convective systems and congestus in relation to the position of the African easterly jet is studied, but only the daytime cumulonimbus distribution indicates some influence of the jet position.


Monthly Weather Review | 2011

Observations of Elevated Convection Initiation Leading to a Surface-Based Squall Line during 13 June IHOP_2002

John H. Marsham; Stanley B. Trier; Tammy M. Weckwerth; James W. Wilson

Abstract The evolution of a mesoscale convective system (MCS) observed during the International H2O Project that took place on the Great Plains of the United States is described. The MCS formed at night in a frontal zone, with four initiation episodes occurring between approximately 0000 and 0400 local time. Radar, radiosonde, and surface data together show that at least three of the initiation episodes were elevated, occurring from moist conditionally unstable layers located above the boundary layer, which had been stabilized by previous MCSs. Initiation occurred in northwest–southeast-oriented lines where a southerly nocturnal low-level jet terminated, generating elevated convergence. One initiation episode was observed using the S-band dual-polarization Doppler radar (S-Pol) and occurred at the intersection of this convergence zone with a propagating wave. Calculations of the Scorer parameter were consistent with wave trapping. Downdrafts from the developing convection generated both waves and bores, w...


Journal of the Atmospheric Sciences | 2015

A Parameterization of Convective Dust Storms for Models with Mass-Flux Convection Schemes

Florian Pantillon; Peter Knippertz; John H. Marsham; Cathryn E. Birch

AbstractCold pool outflows, generated by downdrafts from moist convection, can generate strong winds and therefore uplift of mineral dust. These so-called haboob convective dust storms occur over all major dust source areas worldwide and contribute substantially to emissions in northern Africa, the world’s largest source. Most large-scale models lack convective dust storms because they do not resolve moist convection, relying instead on convection schemes. The authors suggest a parameterization of convective dust storms to account for their contribution in such large-scale models. The parameterization is based on a simple conceptual model, in which the downdraft mass flux from the convection scheme spreads out radially in a cylindrical cold pool. The parameterization is tested with a set of Met Office Unified Model runs for June and July 2006 over West Africa. It is calibrated with a convection-permitting run and applied to a convection-parameterized run. The parameterization successfully produces the ext...

Collaboration


Dive into the John H. Marsham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Knippertz

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge