Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kessiri Kongmanas is active.

Publication


Featured researches published by Kessiri Kongmanas.


Journal of Cellular Physiology | 2015

Proteomic Characterization of Pig Sperm Anterior Head Plasma Membrane Reveals Roles of Acrosomal Proteins in ZP3 Binding.

Kessiri Kongmanas; Hathairat Kruevaisayawan; Arpornrad Saewu; Clarissa Sugeng; Jason Fernandes; Puneet Souda; Jonathan B. Angel; Kym F. Faull; R. John Aitken; Julian P. Whitelegge; Daniel M. Hardy; Trish Berger; Mark A. Baker; Nongnuj Tanphaichitr

The sperm anterior head plasma membrane (APM) is the site where sperm first bind to the zona pellucida (ZP). This binding reaches the maximum following the sperm capacitation process. To gain a better understanding of the sperm‐ZP binding mechanisms, we compared protein profiles obtained from mass spectrometry of APM vesicles isolated from non‐capacitated and capacitated sperm. The results revealed that ZP‐binding proteins were the most abundant group of proteins, with a number of them showing increased levels in capacitated sperm. Blue native gel electrophoresis and far‐western blotting revealed presence of high molecular weight (HMW) protein complexes in APM vesicles of both non‐capacitated and capacitated sperm, but the complexes (∼750–1300 kDa) from capacitated sperm possessed much higher binding capacity to pig ZP3 glycoprotein. Proteomic analyses indicated that a number of proteins known for their acrosome localization, including zonadhesin, proacrosin/acrosin and ACRBP, were components of capacitated APM HMW complexes, with zonadhesin being the most enriched protein. Our immunofluorescence results further demonstrated that a fraction of these acrosomal proteins was transported to the surface of live acrosome‐intact sperm during capacitation. Co‐immunoprecipitation indicated that zonadhesin, proacrosin/acrosin and ACRBP interacted with each other and they may traffic as a complex from the acrosome to the sperm surface. Finally, the significance of zonadhesin in the binding of APM HMW complexes to pig ZP3 was demonstrated; the binding ability was decreased following treatment of the complexes with anti‐zonadhesin antibody. Our results suggested that acrosomal proteins, especially zonadhesin, played roles in the initial sperm‐ZP binding during capacitation. J. Cell. Physiol. 230: 449–463, 2015.


Asian Journal of Andrology | 2015

Remodeling of the plasma membrane in preparation for sperm-egg recognition: roles of acrosomal proteins

Nongnuj Tanphaichitr; Kessiri Kongmanas; Hathairat Kruevaisayawan; Arpornrad Saewu; Clarissa Sugeng; Jason Fernandes; Puneet Souda; JonathanB Angel; KymF Faull; RJohn Aitken; Julian P. Whitelegge; Daniel M. Hardy; Trish Berger; Mark A. Baker

The interaction of sperm with the egg′s extracellular matrix, the zona pellucida (ZP) is the first step of the union between male and female gametes. The molecular mechanisms of this process have been studied for the past six decades with the results obtained being both interesting and confusing. In this article, we describe our recent work, which attempts to address two lines of questions from previous studies. First, because there are numerous ZP binding proteins reported by various researchers, how do these proteins act together in sperm-ZP interaction? Second, why do a number of acrosomal proteins have ZP affinity? Are they involved mainly in the initial sperm-ZP binding or rather in anchoring acrosome reacting/reacted spermatozoa to the ZP? Our studies reveal that a number of ZP binding proteins and chaperones, extracted from the anterior sperm head plasma membrane, coexist as high molecular weight (HMW) complexes, and that these complexes in capacitated spermatozoa have preferential ability to bind to the ZP. Zonadhesin (ZAN), known as an acrosomal protein with ZP affinity, is one of these proteins in the HMW complexes. Immunoprecipitation indicates that ZAN interacts with other acrosomal proteins, proacrosin/acrosin and sp32 (ACRBP), also present in the HMW complexes. Immunodetection of ZAN and proacrosin/acrosin on spermatozoa further indicates that both proteins traffic to the sperm head surface during capacitation where the sperm acrosomal matrix is still intact, and therefore they are likely involved in the initial sperm-ZP binding step.


Human Reproduction | 2014

Antimicrobial host defence peptide, LL-37, as a potential vaginal contraceptive

Nopparat Srakaew; Charlene D. Young; Arpornrad Saewu; Hongbin Xu; Krista Quesnel; Riccardo di Brisco; Kessiri Kongmanas; Duriya Fongmoon; Greanggrai Hommalai; Wattana Weerachatyanukul; Susan H. Hall; Yonglian Zhang; Luigi Panza; Laura Franchini; Federica Compostella; Terry W. Pearson; Robert E. W. Hancock; Richard Oko; Louis Hermo; Nongnuj Tanphaichitr

STUDY QUESTION Does antimicrobial peptide, LL-37, inhibit sperm fertilizing ability? SUMMARY ANSWER Our results indicate that LL-37 inhibits mouse and human sperm fertilizing ability. WHAT IS KNOWN ALREADY LL-37, a cationic antimicrobial peptide, exerts its microbicidal effects through the disruption of microbial cytoplasmic membranes following its interaction with microbial surface anionic phospholipids. ALL-38 (an LL-37 close analogue: LL-37 + Ala at the N-terminus) is produced in the vagina 2-6 h post-intercourse from its precursor hCAP-18, a seminal plasma component. At this time, motile sperm have already swum into the uterine cavity, thus unexposed to ALL-38. Since sperm contain a substantial amount of acidic sulfogalactosylglycerolipid (SGG) on their surface, treatment of sperm with LL-37 may cause their membrane disruption in an analogous manner to that occurring on microbial membranes. STUDY DESIGN, SIZE AND DURATION Mouse/human sperm treated (2-30 min) with LL-37 in a physiological concentration range (up to 10.8 µM) were assessed for SGG-dependent LL-37 binding, and parameters relevant to fertilizing ability, namely motility and intactness of the sperm acrosome and plasma membrane. Ability of mouse sperm to fertilize eggs in vitro was also evaluated. Each study was performed with greater than or equal to three different sperm samples. The efficacy of LL-37 to inhibit sperm fertilizing ability in vivo was determined in female mice (n = 26 each for LL-37 treatment and no treatment), using sperm retrieved from 26 males. PARTICIPANTS/MATERIALS, SETTING, METHODS Human sperm samples were donated by fertile men. LL-37 was chemically synthesized and was biotinylated for sperm binding studies. Sperm motility was assessed by videomicroscopy and the acrosomal status by Coomassie blue staining of acrosome-intact mouse sperm or the exposure of CD46, an inner acrosomal membrane protein, of acrosome reacted human sperm. Sperm membrane permeabilization/disruption was assessed by the loss of hypo-osmotic swelling response, an incorporation of Sytox Green (a membrane impermeable fluorescent DNA dye), and electron microscopy. Mouse IVF was scored by the presence of two pronuclei in eggs 6 h post-insemination. Ability of mouse sperm to fertilize eggs in vivo was determined by the pregnancy outcome of female mice injected transcervically with sperm with or without LL-37. MAIN RESULTS AND THE ROLE OF CHANCE Biotinylated LL-37 bound to both mouse and human sperm and the binding was partially dependent on sperm surface SGG. Mouse and human sperm became immotile and underwent a premature acrosome reaction upon treatment with LL-37 at 3.6 and 10.8 µM, respectively. The initial action of LL-37 on both mouse and human sperm appeared to be through permeabilization/disruption of sperm surface membranes evidenced by the loss of hypo-osmotic swelling response, Sytox Green staining and electron microscopy revealing ultrastructural damage. Mouse sperm treated with 3.6 µM LL-37 lost the ability to fertilize eggs both in vitro and in vivo. All 26 female mice inseminated with sperm and LL-37 did not become pregnant. No apparent damage to the reproductive tract was observed as revealed by histological characterization in LL-37-inseminated mice and these females resumed fecundity following mating with fertile males. LIMITATIONS, REASONS FOR CAUTION Direct demonstration that LL-37 treated human sperm fail to fertilize eggs was limited by legal restrictions on obtaining human eggs for such use. WIDER IMPLICATIONS OF THE FINDINGS Our results reveal selective inhibitory effects of LL-37 on sperm fertilizing ability in mice without apparent impairment to the female reproductive tract. LL-37 is therefore a promising candidate to be developed into a vaginal contraceptive with microbicidal activity. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Grand Challenges Explorations grant from the Bill & Melinda Gates Foundation (OPP1024509), Canadian Institutes of Health Research (MOP119438 & CCI82413) and International Collaboration and Exchanges NSFC of China (No.30611120525). There are no competing interests to declare.


Biochemical and Biophysical Research Communications | 2012

Pig sperm membrane microdomains contain a highly glycosylated 15-25-kDa wheat germ agglutinin-binding protein.

Waraporn Kasekarn; Takeru Kanazawa; Kazuki Hori; Tomoyuki Tsuchiyama; Xue Lian; Estelle Garénaux; Kessiri Kongmanas; Nongnuj Tanphaichitr; Hiroshi Yasue; Chihiro Sato; Ken Kitajima

A highly glycosylated protein, which has unique, novel features in localization, structure, and potential function, is found in pig sperm, and named WGA-gp due to its high binding property with wheat germ agglutinin (WGA). WGA-gp is localized mainly in flagella and enriched in membrane microdomains or lipid rafts. It is not detected by ordinary protein staining methods due to a high content of both N- and O-glycans consisting of neutral monosaccharides. Interestingly, WGA-gp may be involved in intracellular Ca(2+) regulation. Treatment of sperm with anti-WGA-gp antibody enhances the amplitude of Ca(2+) oscillation without changing the basal intracellular Ca(2+) concentrations. All these features of WGA-gp, except for different carbohydrate structures occupying most part of the molecules, are similar to those of flagellasialin in sea urchin sperm, which regulates the intracellular Ca(2+) concentration. Presence of carbohydrate-enriched flagellar proteins involved in intracellular Ca(2+) regulation may be a common feature among animal sperm.


Journal of Lipid Research | 2010

Quantification of seminolipid by LC-ESI-MS/MS-multiple reaction monitoring: compensatory levels in Cgt mice

Kessiri Kongmanas; Hongbin Xu; Arman Yaghoubian; Laura Franchini; Luigi Panza; Fiamma Ronchetti; Kym F. Faull; Nongnuj Tanphaichitr

Seminolipid, also known as sulfogalactosylglycerolipid (SGG), plays important roles in male reproduction. Therefore, an accurate and sensitive method for SGG quantification in testes and sperm is needed. Here we compare SGG quantitation by the traditional colorimetric Azure A assay with LC-ESI-MS/MS using multiple reaction monitoring (MRM). Inclusion of deuterated SGG as the internal standard endowed accuracy to the MRM method. The results showed reasonable agreement between the two procedures for purified samples, but for crude lipid extracts, the colorimetric assay significantly overestimated the SGG content. Using ESI-MS/MS MRM, C16:0-alkyl/C16:0-acyl SGG of Cgt+/− mice was quantified to be 406.06 ± 23.63 μg/g testis and 0.13 ± 0.02 μg/million sperm, corresponding to 78% and 87% of the wild-type values, respectively. CGT (ceramide galactosyltransferase) is a critical enzyme in the SGG biosynthesis pathway. Cgt−/− males depleted of SGG are infertile due to spermatogenesis arrest. However, Cgt+/− males sire offspring. The higher than 50% expression level of SGG in Cgt+/− animals, compared with the wild-type expression, might be partly due to compensatory translation of the active CGT enzyme. The results also indicated that 78% of SGG levels in Cgt+/− mice were sufficient for normal spermatogenesis.


Pharmaceuticals | 2016

Potential Use of Antimicrobial Peptides as Vaginal Spermicides/Microbicides

Nongnuj Tanphaichitr; Nopparat Srakaew; Rhea Alonzi; Wongsakorn Kiattiburut; Kessiri Kongmanas; Ruina Zhi; Weihua Li; Mark A. Baker; Guanshun Wang; Duane R. Hickling

The concurrent increases in global population and sexually transmitted infection (STI) demand a search for agents with dual spermicidal and microbicidal properties for topical vaginal application. Previous attempts to develop the surfactant spermicide, nonoxynol-9 (N-9), into a vaginal microbicide were unsuccessful largely due to its inefficiency to kill microbes. Furthermore, N-9 causes damage to the vaginal epithelium, thus accelerating microbes to enter the women’s body. For this reason, antimicrobial peptides (AMPs), naturally secreted by all forms of life as part of innate immunity, deserve evaluation for their potential spermicidal effects. To date, twelve spermicidal AMPs have been described including LL-37, magainin 2 and nisin A. Human cathelicidin LL-37 is the most promising spermicidal AMP to be further developed for vaginal use for the following reasons. First, it is a human AMP naturally produced in the vagina after intercourse. Second, LL-37 exerts microbicidal effects to numerous microbes including those that cause STI. Third, its cytotoxicity is selective to sperm and not to the female reproductive tract. Furthermore, the spermicidal effects of LL-37 have been demonstrated in vivo in mice. Therefore, the availability of LL-37 as a vaginal spermicide/microbicide will empower women for self-protection against unwanted pregnancies and STI.


Chemistry and Physics of Lipids | 2008

An efficient and convenient synthesis of deuterium-labelled seminolipid isotopomers and their ESI-MS characterization

Laura Franchini; Luigi Panza; Kessiri Kongmanas; Nongnuj Tanphaichitr; Kym F. Faull; Fiamma Ronchetti

Seminolipids 1a and 1b and galactosylalkylacylglycerols 2a and 2b, labelled with deuterium on the alkyl or acyl chain, respectively, were obtained isotopically and chemically pure through a straightforward synthesis from protected glycidyl galactoside 3 in an overall 22% yield. The identity and purity of compounds was ascertained by NMR spectroscopy and ESI mass spectrometry analysis. These labelled compounds are important as internal standards for quantification of these lipids by mass spectrometry, and they could also be used in metabolic studies in in vitro and even in vivo systems. Extension of the procedure could provide a route for the preparation of isotopomers of other compounds of the same general class.


International Archives of Otorhinolaryngology | 2014

Lipidomic Profiling of Mastoid Bone and Tissue from Patients with Chronic Otomastoiditis

Farbod Fazlollahi; Kessiri Kongmanas; Nongnuj Tanphaichitr; Jeffrey Suh; Kym F. Faull; Quinton Gopen

Introduction Chronic otomastoiditis causes pain, otorrhea, and hearing loss resulting from the growth of tissue within the normally hollow mastoid cavity. Objectives In this report, we used a lipidomics approach to profile major mastoid bone and tissue lipids from patients with and without otomastoiditis. Methods The bone dust created during mastoidectomy, as well as the mastoid tissue, was analyzed from seven patients. Bone dust was also collected and analyzed in an additional four otologic cases (parotidectomy requiring mastoidectomy). Samples were subjected to a modified Bligh/Dyer lipid extraction, then high-performance thin-layer chromatography (HPTLC), combined gas chromatography/electron impact-mass spectrometry (GC/EI-MS), and flow-injection/electrospray ionization-tandem mass spectrometry (FI/ESI-MSMS). Data were analyzed for identification and profiling of major lipid components. Results HPTLC revealed the presence of various lipid classes, including phosphatidylcholines, cholesterol, and triacylglycerols. GC/EI-MS analysis revealed the presence of cholesterol and several fatty acids. FI/ESI-MSMS analysis revealed a host of phosphatidylcholines, phosphatidylethanolamines, and cholesteryl esters. Conclusion We used a lipidomics approach to develop an efficient (both in time and tissue amount) methodology for analysis of these tissues, identify the most abundant and common lipid species, and create a base of knowledge from which more focused endeavors in biomarker discovery can emerge. In an effort toward improved patient categorization and individualized intervention, the ultimate goal of this work is to correlate these lipid molecules to disease state and progression. This is the first reported study of its kind on these tissues.


Progress in Lipid Research | 2018

Properties, metabolism and roles of sulfogalactosylglycerolipid in male reproduction

Nongnuj Tanphaichitr; Kessiri Kongmanas; Kym F. Faull; Julian P. Whitelegge; Federica Compostella; Naoko Goto-Inoue; James-Jules Linton; Brendon Doyle; Richard Oko; Hongbin Xu; Luigi Panza; Arpornrad Saewu

Sulfogalactosylglycerolipid (SGG, aka seminolipid) is selectively synthesized in high amounts in mammalian testicular germ cells (TGCs). SGG is an ordered lipid and directly involved in cell adhesion. SGG is indispensable for spermatogenesis, a process that greatly depends on interaction between Sertoli cells and TGCs. Spermatogenesis is disrupted in mice null for Cgt and Cst, encoding two enzymes essential for SGG biosynthesis. Sperm surface SGG also plays roles in fertilization. All of these results indicate the significance of SGG in male reproduction. SGG homeostasis is also important in male fertility. Approximately 50% of TGCs become apoptotic and phagocytosed by Sertoli cells. SGG in apoptotic remnants needs to be degraded by Sertoli lysosomal enzymes to the lipid backbone. Failure in this event leads to a lysosomal storage disorder and sub-functionality of Sertoli cells, including their support for TGC development, and consequently subfertility. Significantly, both biosynthesis and degradation pathways of the galactosylsulfate head group of SGG are the same as those of sulfogalactosylceramide (SGC), a structurally related sulfoglycolipid important for brain functions. If subfertility in males with gene mutations in SGG/SGC metabolism pathways manifests prior to neurological disorder, sperm SGG levels might be used as a reporting/predicting index of the neurological status.


Biochimica et Biophysica Acta | 2007

Visualizing the localization of sulfoglycolipids in lipid raft domains in model membranes and sperm membrane extracts

Wattana Weerachatyanukul; Ira Probodh; Kessiri Kongmanas; Nongnuj Tanphaichitr; Linda J. Johnston

Collaboration


Dive into the Kessiri Kongmanas's collaboration.

Top Co-Authors

Avatar

Nongnuj Tanphaichitr

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kym F. Faull

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arpornrad Saewu

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Clarissa Sugeng

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trish Berger

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Puneet Souda

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge