Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ketan S. Gajiwala is active.

Publication


Featured researches published by Ketan S. Gajiwala.


The FASEB Journal | 1996

Forces contributing to the conformational stability of proteins.

C N Pace; B A Shirley; M McNutt; Ketan S. Gajiwala

For 35 years, the prevailing view has been that the hydrophobic effect is the dominant force in protein folding. The importance of hydrogen bonding was always clear, but whether it made a net favorable contribution to protein stability was not. Studies of mutant proteins have improved our understanding of the forces stabilizing proteins. They suggest that hydrogen bonding and the hydrophobic effect make large but comparable contributions to the stability of globular proteins.—Pace, C. N., Shirley, B. A., McNutt, M., Gajiwala, K. Forces contributing to the conformational stability of proteins. FASEB J. 10, 75‐83 (1996)


Nature | 2000

Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding.

Ketan S. Gajiwala; Hua Chen; Fabrice Cornille; Bernard P. Roques; Walter Reith; Bernard Mach; Stephen K. Burley

Regulatory factor X (RFX) proteins are transcriptional activators that recognize X-boxes (DNA of the sequence 5′-GTNRCC(0–3N)RGYAAC-3′, where N is any nucleotide, R is a purine and Y is a pyrimidine) using a highly conserved 76-residue DNA-binding domain (DBD). DNA-binding defects in the protein RFX5 cause bare lymphocyte syndrome or major histocompatibility antigen class II deficiency. RFX1, -2 and -3 regulate expression of other medically important gene products (for example, interleukin-5 receptor α chain, IL-5Rα). Fusions of the ligand-binding domain of the oestrogen receptor with the DBD of RFX4 occur in some human breast tumours. Here we present a 1.5 Å-resolution structure of two copies of the DBD of human RFX1 (hRFX1) binding cooperatively to a symmetrical X-box. hRFX1 is an unusual member of the winged-helix subfamily of helix–turn–helix proteins because it uses a β-hairpin (or wing) to recognize DNA instead of the recognition helix typical of helix–turn–helix proteins. A new model for interactions between linker histones and DNA is proposed.


Proceedings of the National Academy of Sciences of the United States of America | 2009

KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients.

Ketan S. Gajiwala; Joe C. Wu; James G. Christensen; Gayatri D. Deshmukh; Wade Diehl; Jonathan P. DiNitto; Jessie M. English; Michael J. Greig; You-Ai He; Suzanne L. Jacques; Elizabeth A. Lunney; Michele McTigue; David Molina; Terri Quenzer; Peter A. Wells; Xiu Yu; Yan Zhang; Aihua Zou; Mark R. Emmett; Alan G. Marshall; Hui-Min Zhang; George D. Demetri

Most gastrointestinal stromal tumors (GISTs) exhibit aberrant activation of the receptor tyrosine kinase (RTK) KIT. The efficacy of the inhibitors imatinib mesylate and sunitinib malate in GIST patients has been linked to their inhibition of these mutant KIT proteins. However, patients on imatinib can acquire secondary KIT mutations that render the protein insensitive to the inhibitor. Sunitinib has shown efficacy against certain imatinib-resistant mutants, although a subset that resides in the activation loop, including D816H/V, remains resistant. Biochemical and structural studies were undertaken to determine the molecular basis of sunitinib resistance. Our results show that sunitinib targets the autoinhibited conformation of WT KIT and that the D816H mutant undergoes a shift in conformational equilibrium toward the active state. These findings provide a structural and enzymologic explanation for the resistance profile observed with the KIT inhibitors. Prospectively, they have implications for understanding oncogenic kinase mutants and for circumventing drug resistance.


Proteins | 2005

Structural analysis of a set of proteins resulting from a bacterial genomics project

John Badger; J.M. Sauder; J.M. Adams; S. Antonysamy; K. Bain; M.G. Bergseid; Sean Buchanan; Michelle D. Buchanan; Y. Batiyenko; Jon A. Christopher; S. Emtage; A. Eroshkina; I. Feil; E.B. Furlong; Ketan S. Gajiwala; X. Gao; D. He; Jorg Hendle; A. Huber; K. Hoda; P. Kearins; C. Kissinger; B. Laubert; H.A. Lewis; J. Lin; K. Loomis; D. Lorimer; G. Louie; M. Maletic; C.D. Marsh

The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se‐Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X‐ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence‐structure relationships between the SGX and PDB structures were investigated using PDB‐BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB. Proteins 2005.


Journal of Molecular Biology | 2011

Contribution of hydrophobic interactions to protein stability.

C. Nick Pace; Hailong Fu; Katrina Lee Fryar; John Landua; Saul R. Trevino; Bret A. Shirley; Marsha McNutt Hendricks; Satoshi Iimura; Ketan S. Gajiwala; J. Martin Scholtz; Gerald R. Grimsley

Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin headpiece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compared our results with those of previous studies and reached the following conclusions: (1) Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6±0.3 kcal/mol per -CH(2)- group), than to the stability of a large protein, VlsE (1.6±0.3 kcal/mol per -CH(2)- group). (2) Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kilocalories per mole) Phe18 (3.9), Met13 (3.1), Phe7 (2.9), Phe11 (2.7), and Leu21 (2.7). (3) Based on the Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a -CH(2)- group on folding contributes, on average, 1.1±0.5 kcal/mol to protein stability. (4) The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔG(tr) values from water to cyclohexane. (5) For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60±4% and hydrogen bonds contribute 40±4% to protein stability. (6) Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominantly by hydrophobic interactions.


Structure | 2013

Insights into the Aberrant Activity of Mutant EGFR Kinase Domain and Drug Recognition.

Ketan S. Gajiwala; Junli Feng; RoseAnn Ferre; Kevin Ryan; Oleg Brodsky; Scott Weinrich; John Charles Kath; Al Stewart

The oncogenicity of the L858R mutant form of the epidermal growth factor receptor (EGFR) in non-small-cell lung cancer is thought to be due to the constitutive activation of its kinase domain. The selectivity of the marketed drugs gefitinib and erlotinib for L858R mutant is attributed to their specific recognition of the active kinase and to weaker ATP binding by L858R EGFR. We present crystal structures showing that neither L858R nor the drug-resistant L858R+T790M EGFR kinase domain is in the constitutively active conformation. Additional co-crystal structures show that gefitinib and dacomitinib, an irreversible anilinoquinazoline derivative currently in clinical development, may not be conformation specific for the active state of the enzyme. Structural data further reveal the potential mode of recognition of one of the autophosphorylation sites in the C-terminal tail, Tyr-1016, by the kinase domain. Biochemical and biophysical evidence suggest that the oncogenic mutations impact the conformational dynamics of the enzyme.


Cancer Letters | 2013

Specific inhibition of Notch1 signaling enhances the antitumor efficacy of chemotherapy in triple negative breast cancer through reduction of cancer stem cells

Ming Qiu; Qinghai Peng; Ivy Jiang; Christopher Carroll; Guangzhou Han; Isha Rymer; John Lippincott; Joseph Zachwieja; Ketan S. Gajiwala; Eugenia Kraynov; Stephane Thibault; Donna Marie Stone; Yijie Gao; Susan Sofia; Jorge Gallo; Gang Li; Jennifer Yang; Kang Li; Ping Wei

Recent evidence suggests that Notch signaling may play a role in regulation of cancer stem cell (CSC) self-renewal and differentiation hence presenting a promising target for development of novel therapies for aggressive cancers such as triple negative breast cancer (TNBC). We generated Notch1 monoclonal antibodies (mAbs) that specifically bind to the negative regulatory region of human Notch1. Notch1 inhibition in TNBC Sum149 and patient derived xenograft (PDX) 144580 models led to significant TGI particularly in combination with docetaxel. More interestingly, Notch1 mAbs caused a reduction in mammosphere formation and CD44+/CD24-/lo cell population. It also resulted in decreased tumor incidence upon re-implantation and delay in tumor recurrence. Our data demonstrated a potent antitumor efficacy of Notch1 mAbs, with a remarkable activity against CSCs. These findings suggest that anti-Notch1 mAbs may provide novel therapies to improve the efficacy of conventional therapies by directly targeting the CSC niche. They may also delay tumor recurrence and hence have a major impact on cancer patient survival.


Protein Science | 2014

Contribution of hydrogen bonds to protein stability

C. Nick Pace; Hailong Fu; Katrina Lee Fryar; John Landua; Saul R. Trevino; David Schell; Richard L. Thurlkill; Satoshi Imura; J. Martin Scholtz; Ketan S. Gajiwala; Jozef Sevcik; Lubica Urbanikova; Jeffery K. Myers; Kazufumi Takano; Eric J. Hebert; Bret A. Shirley; Gerald R. Grimsley

Our goal was to gain a better understanding of the contribution of the burial of polar groups and their hydrogen bonds to the conformational stability of proteins. We measured the change in stability, Δ(ΔG), for a series of hydrogen bonding mutants in four proteins: villin headpiece subdomain (VHP) containing 36 residues, a surface protein from Borrelia burgdorferi (VlsE) containing 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa (RNase Sa) and T1 (RNase T1). Crystal structures were determined for three of the hydrogen bonding mutants of RNase Sa: S24A, Y51F, and T95A. The structures are very similar to wild type RNase Sa and the hydrogen bonding partners form intermolecular hydrogen bonds to water in all three mutants. We compare our results with previous studies of similar mutants in other proteins and reach the following conclusions. (1) Hydrogen bonds contribute favorably to protein stability. (2) The contribution of hydrogen bonds to protein stability is strongly context dependent. (3) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. (4) Polar group burial can make a favorable contribution to protein stability even if the polar groups are not hydrogen bonded. (5) The contribution of hydrogen bonds to protein stability is similar for VHP, a small protein, and VlsE, a large protein.


Nature Communications | 2016

Polycomb repressive complex 2 structure with inhibitor reveals a mechanism of activation and drug resistance

Alexei Brooun; Ketan S. Gajiwala; Ya-Li Deng; Wei Liu; Patrick Bingham; You-Ai He; Wade Diehl; Nicole Grable; Pei-Pei Kung; Scott C. Sutton; Karen Maegley; Xiu Yu; Al Stewart

Polycomb repressive complex 2 (PRC2) mediates gene silencing through chromatin reorganization by methylation of histone H3 lysine 27 (H3K27). Overexpression of the complex and point mutations in the individual subunits of PRC2 have been shown to contribute to tumorigenesis. Several inhibitors of the PRC2 activity have shown efficacy in EZH2-mutated lymphomas and are currently in clinical development, although the molecular basis of inhibitor recognition remains unknown. Here we report the crystal structures of the inhibitor-bound wild-type and Y641N PRC2. The structures illuminate an important role played by a stretch of 17 residues in the N-terminal region of EZH2, we call the activation loop, in the stimulation of the enzyme activity, inhibitor recognition and the potential development of the mutation-mediated drug resistance. The work presented here provides new avenues for the design and development of next-generation PRC2 inhibitors through establishment of a structure-based drug design platform.


Journal of Medicinal Chemistry | 2010

Dihydroxyphenylisoindoline amides as orally bioavailable inhibitors of the heat shock protein 90 (hsp90) molecular chaperone.

Pei-Pei Kung; Buwen Huang; Gang Zhang; Joe Zhongxiang Zhou; Jeff Wang; Jennifer A. Digits; Judith Skaptason; Shinji Yamazaki; David Neul; Michael Zientek; Jeff Elleraas; Pramod P. Mehta; Min-Jean Yin; Michael J. Hickey; Ketan S. Gajiwala; Caroline Rodgers; Jay F. Davies; Michael R. Gehring

The discovery and optimization of potency and metabolic stability of a novel class of dihyroxyphenylisoindoline amides as Hsp90 inhibitors are presented. Optimization of a screening hit using structure-based design and modification of log D and chemical structural features led to the identification of a class of orally bioavailable non-quinone-containing Hsp90 inhibitors. This class is exemplified by 14 and 15, which possess improved cell potency and pharmacokinetic profiles compared with the original screening hit.

Collaboration


Dive into the Ketan S. Gajiwala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yiying Zhang

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge