Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin C. Jones is active.

Publication


Featured researches published by Kevin C. Jones.


Physics in Medicine and Biology | 2014

Proton beam characterization by proton-induced acoustic emission: simulation studies

Kevin C. Jones; A Witztum; Chandra M. Sehgal; Stephen Avery

Due to their Bragg peak, proton beams are capable of delivering a targeted dose of radiation to a narrow volume, but range uncertainties currently limit their accuracy. One promising beam characterization technique, protoacoustic range verification, measures the acoustic emission generated by the proton beam. We simulated the pressure waves generated by proton radiation passing through water. We observed that the proton-induced acoustic signal consists of two peaks, labeled α and γ, with two originating sources. The α acoustic peak is generated by the pre-Bragg peak heated region whereas the source of the γ acoustic peak is the proton Bragg peak. The arrival time of the α and γ peaks at a transducer reveals the distance from the beam propagation axis and Bragg peak center, respectively. The maximum pressure is not observed directly above the Bragg peak due to interference of the acoustic signals. Range verification based on the arrival times is shown to be more effective than determining the Bragg peak position based on pressure amplitudes. The temporal width of the α and γ peaks are linearly proportional to the beam diameter and Bragg peak width, respectively. The temporal separation between compression and rarefaction peaks is proportional to the spill time width. The pressure wave expected from a spread out Bragg peak dose is characterized. The simulations also show that acoustic monitoring can verify the proton beam dose distribution and range by characterizing the Bragg peak position to within ~1 mm.


Medical Physics | 2015

Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

Kevin C. Jones; François Vander Stappen; Christopher R. Bawiec; Guillaume Janssens; Peter A. Lewin; D. Prieels; Timothy D. Solberg; Chandra M. Sehgal; Stephen Avery

PURPOSE To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. METHODS An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. RESULTS The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. CONCLUSIONS The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.


Physics in Medicine and Biology | 2016

How proton pulse characteristics influence protoacoustic determination of proton-beam range: simulation studies

Kevin C. Jones; Chandra M. Seghal; Stephen Avery

The unique dose deposition of proton beams generates a distinctive thermoacoustic (protoacoustic) signal, which can be used to calculate the proton range. To identify the expected protoacoustic amplitude, frequency, and arrival time for different proton pulse characteristics encountered at hospital-based proton sources, the protoacoustic pressure emissions generated by 150 MeV, pencil-beam proton pulses were simulated in a homogeneous water medium. Proton pulses with Gaussian widths ranging up to 200 μs were considered. The protoacoustic amplitude, frequency, and time-of-flight (TOF) range accuracy were assessed. For TOF calculations, the acoustic pulse arrival time was determined based on multiple features of the wave. Based on the simulations, Gaussian proton pulses can be categorized as Dirac-delta-function-like (FWHM < 4 μs) and longer. For the δ-function-like irradiation, the protoacoustic spectrum peaks at 44.5 kHz and the systematic error in determining the Bragg peak range is <2.6 mm. For longer proton pulses, the spectrum shifts to lower frequencies, and the range calculation systematic error increases (⩽ 23 mm for FWHM of 56 μs). By mapping the protoacoustic peak arrival time to range with simulations, the residual error can be reduced. Using a proton pulse with FWHM = 2 μs results in a maximum signal-to-noise ratio per total dose. Simulations predict that a 300 nA, 150 MeV, FWHM = 4 μs Gaussian proton pulse (8.0 × 10(6) protons, 3.1 cGy dose at the Bragg peak) will generate a 146 mPa pressure wave at 5 cm beyond the Bragg peak. There is an angle dependent systematic error in the protoacoustic TOF range calculations. Placing detectors along the proton beam axis and beyond the Bragg peak minimizes this error. For clinical proton beams, protoacoustic detectors should be sensitive to <400 kHz (for -20 dB). Hospital-based synchrocyclotrons and cyclotrons are promising sources of proton pulses for generating clinically measurable protoacoustic emissions.


Medical Physics | 2016

Acoustic time-of-flight for proton range verification in water.

Kevin C. Jones; François Vander Stappen; Chandra M. Sehgal; Stephen Avery

PURPOSE Measurement of the arrival times of thermoacoustic waves induced by pulsed proton dose depositions (protoacoustics) may provide a proton range verification method. The goal of this study is to characterize the required dose and protoacoustic proton range (distance) verification accuracy in a homogeneous water medium at a hospital-based clinical cyclotron. METHODS Gaussian-like proton pulses with 17 μs widths and instantaneous currents of 480 nA (5.6 × 10(7) protons/pulse, 3.4 cGy/pulse at the Bragg peak) were generated by modulating the cyclotron proton source with a function generator. After energy degradation, the 190 MeV proton pulses irradiated a water phantom, and the generated protoacoustic emissions were measured by a hydrophone. The detector position and proton pulse characteristics were varied. The experimental results were compared to simulations. Different arrival time metrics derived from acoustic waveforms were compared, and the accuracy of protoacoustic time-of-flight distance calculations was assessed. RESULTS A 27 mPa noise level was observed in the treatment room during irradiation. At 5 cm from the proton beam, an average maximum pressure of 5.2 mPa/1 × 10(7) protons (6.1 mGy at the Bragg peak) was measured after irradiation with a proton pulse with 10%-90% rise time of 11 μs. Simulation and experiment arrival times agreed well, and the observed 2.4 μs delay between simulation and experiment is attributed to the difference between the hydrophones acoustic and geometric centers. Based on protoacoustic arrival times, the beam axis position was measured to within (x, y) = (-2.0,  0.5) ± 1 mm. After deconvolution of the exciting proton pulse, the protoacoustic compression peak provided the most consistent measure of the distance to the Bragg peak, with an error distribution with mean = - 4.5 mm and standard deviation = 2.0 mm. CONCLUSIONS Based on water tank measurements at a clinical hospital-based cyclotron, protoacoustics is a potential method for measuring the beams position (x and y within 2.0 mm) and Bragg peak range (2.0 mm standard deviation), although range verification will require simulation or experimental calibration to remove systematic error. Based on extrapolation, a protoacoustic arrival time reproducibility of 1.5 μs (2.2 mm) is achievable with 2 Gy of total deposited dose. Of the compared methods, deconvolution of the excitation proton pulse is the best technique for extracting protoacoustic arrival times, particularly if there is variation in the proton pulse shape.


Physics in Medicine and Biology | 2018

Characterization of Compton-scatter imaging with an analytical simulation method

Kevin C. Jones; Gage Redler; A Templeton; Damian Bernard; J Turian; James C.H. Chu

By collimating the photons scattered when a megavoltage therapy beam interacts with the patient, a Compton-scatter image may be formed without the delivery of an extra dose. To characterize and assess the potential of the technique, an analytical model for simulating scatter images was developed and validated against Monte Carlo (MC). For three phantoms, the scatter images collected during irradiation with a 6 MV flattening-filter-free therapy beam were simulated. Images, profiles, and spectra were compared for different phantoms and different irradiation angles. The proposed analytical method simulates accurate scatter images up to 1000 times faster than MC. Minor differences between MC and analytical simulated images are attributed to limitations in the isotropic superposition/convolution algorithm used to analytically model multiple-order scattering. For a detector placed at 90° relative to the treatment beam, the simulated scattered photon energy spectrum peaks at 140-220 keV, and 40-50% of the photons are the result of multiple scattering. The high energy photons originate at the beam entrance. Increasing the angle between source and detector increases the average energy of the collected photons and decreases the relative contribution of multiple scattered photons. Multiple scattered photons cause blurring in the image. For an ideal 5 mm diameter pinhole collimator placed 18.5 cm from the isocenter, 10 cGy of deposited dose (2 Hz imaging rate for 1200 MU min-1 treatment delivery) is expected to generate an average 1000 photons per mm2 at the detector. For the considered lung tumor CT phantom, the contrast is high enough to clearly identify the lung tumor in the scatter image. Increasing the treatment beam size perpendicular to the detector plane decreases the contrast, although the scatter subject contrast is expected to be greater than the megavoltage transmission image contrast. With the analytical method, real-time tumor tracking may be possible through comparison of simulated and acquired patient images.


Physics in Medicine and Biology | 2018

Acoustic-based proton range verification in heterogeneous tissue: simulation studies

Kevin C. Jones; Wei Nie; James C.H. Chu; J Turian; Alireza Kassaee; Chandra M. Sehgal; Stephen Avery

Acoustic-based proton range verification (protoacoustics) is a potential in vivo technique for determining the Bragg peak position. Previous measurements and simulations have been restricted to homogeneous water tanks. Here, a CT-based simulation method is proposed and applied to a liver and prostate case to model the effects of tissue heterogeneity on the protoacoustic amplitude and time-of-flight range verification accuracy. For the liver case, posterior irradiation with a single proton pencil beam was simulated for detectors placed on the skin. In the prostate case, a transrectal probe measured the protoacoustic pressure generated by irradiation with five separate anterior proton beams. After calculating the proton beam dose deposition, each CT voxels material properties were mapped based on Hounsfield Unit values, and thermoacoustically-generated acoustic wave propagation was simulated with the k-Wave MATLAB toolbox. By comparing the simulation results for the original liver CT to homogenized variants, the effects of heterogeneity were assessed. For the liver case, 1.4 cGy of dose at the Bragg peak generated 50 mPa of pressure (13 cm distal), a 2×  lower amplitude than simulated in a homogeneous water tank. Protoacoustic triangulation of the Bragg peak based on multiple detector measurements resulted in 0.4 mm accuracy for a δ-function proton pulse irradiation of the liver. For the prostate case, higher amplitudes are simulated (92-1004 mPa) for closer detectors (<8 cm). For four of the prostate beams, the protoacoustic range triangulation was accurate to  ⩽1.6 mm (δ-function proton pulse). Based on the results, application of protoacoustic range verification to heterogeneous tissue will result in decreased signal amplitudes relative to homogeneous water tank measurements, but accurate range verification is still expected to be possible.


Physics in Medicine and Biology | 2017

Proton range verification in homogeneous materials through acoustic measurements

Wei Nie; Kevin C. Jones; Scott Petro; Alireza Kassaee; Chandra M. Sehgal; Stephen Avery

Clinical proton beam quality assurance (QA) requires a simple and accurate method to measure the proton beam Bragg peak (BP) depth. Protoacoustics, the measurement of the pressure waves emitted by thermal expansion resulting from proton dose deposition, may be used to obtain the depth of the BP in a phantom by measuring the time-of-flight of the pressure wave. Rectangular and cylindrical phantoms of different materials (aluminum, lead, and polyethylene) were used for protoacoustic studies. Four different methods for analyzing the protoacoustic signals are compared. Data analysis shows that, for Methods 1 and 2, plastic phantoms have better accuracy than metallic ones because of the lower speed of sound. Method 3 does not require characterizing the speed of sound in the material, but it results in the largest error. Method 4 exhibits minimal error, less than 3 mm (with an uncertainty  ⩽1.5 mm) for all the materials and geometries. Psuedospectral wave-equation simulations (k-Wave MATLAB toolbox) are used to understand the origin of acoustic reflections within the phantom. The presented simulations and experiments show that protoacoustic measurements may provide a low cost and simple QA procedure for proton beam range verification as long as the proper phantoms and calculation methods are used.


Medical Physics | 2018

Compton scatter imaging: A promising modality for image guidance in lung stereotactic body radiation therapy

Gage Redler; Kevin C. Jones; A Templeton; Damian Bernard; J Turian; James C.H. Chu

PURPOSE Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. METHODS To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. RESULTS Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. CONCLUSIONS Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance.


Medical Physics | 2018

Ionizing radiation‐induced acoustics for radiotherapy and diagnostic radiology applications

Susannah Hickling; Liangzhong Xiang; Kevin C. Jones; Katia Parodi; W. Assmann; Stephen Avery; Maritza Hobson; Issam El Naqa

&NA; Acoustic waves are induced via the thermoacoustic effect in objects exposed to a pulsed beam of ionizing radiation. This phenomenon has interesting potential applications in both radiotherapy dosimetry and treatment guidance as well as low‐dose radiological imaging. After initial work in the field in the 1980s and early 1990s, little research was done until 2013 when interest was rejuvenated, spurred on by technological advances in ultrasound transducers and the increasing complexity of radiotherapy delivery systems. Since then, many studies have been conducted and published applying ionizing radiation‐induced acoustic principles into three primary research areas: Linear accelerator photon beam dosimetry, proton therapy range verification, and radiological imaging. This review article introduces the theoretical background behind ionizing radiation‐induced acoustic waves, summarizes recent advances in the field, and provides an outlook on how the detection of ionizing radiation‐induced acoustic waves can be used for relative and in vivo dosimetry in photon therapy, localization of the Bragg peak in proton therapy, and as a low‐dose medical imaging modality. Future prospects and challenges for the clinical implementation of these techniques are discussed.


Radiotherapy and Oncology | 2016

Measurement of Acoustic Emissions Generated by a Pulsed Proton Beam from a Hospital-Based Clinical Cyclotron

Kevin C. Jones; F. Vander Stappen; Christopher R. Bawiec; Guillaume Janssens; Peter A. Lewin; D. Prieels; Timothy D. Solberg; Chandra M. Sehgal; S Avery

113 Further Development of Spinal Tissue Radiotherapy Retreatment Modelling, with inclusion of Hadrontherapy. J. Belmonte-Beitia1, G. Fernandez Calvo1, E. A. Gaffney2, J. Hopewell3, B. Jones4, T. E. Woolley2. 1 Department of Mathematics, U. Castilla-La Mancha, Ciudad Real, Spain 2 Wolfson Centre for Mathematical Biology, U. Oxford, UK 3 Particle Therapy Cancer Research Institute and Green Templeton College, U. Oxford, UK 4 Gray Laboratory, CRUK/MRC Oxford Institute for Radiation Oncology, U. Oxford, UK

Collaboration


Dive into the Kevin C. Jones's collaboration.

Top Co-Authors

Avatar

Chandra M. Sehgal

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Stephen Avery

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

J Turian

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

James C.H. Chu

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

S Avery

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

A Templeton

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alireza Kassaee

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damian Bernard

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gage Redler

Rush University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge