Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Cunningham is active.

Publication


Featured researches published by Kevin Cunningham.


AIAA Guidance, Navigation, and Control Conference and Exhibit | 2005

Dynamics Modeling and Simulation of Large Transport Airplanes in Upset Conditions

John V. Foster; Kevin Cunningham; Charles M. Fremaux; Gautam H. Shah; Eric C. Stewart; Robert A. Rivers; James E. Wilborn; William Gato

As part of NASAs Aviation Safety and Security Program, research has been in progress to develop aerodynamic modeling methods for simulations that accurately predict the flight dynamics characteristics of large transport airplanes in upset conditions. The motivation for this research stems from the recognition that simulation is a vital tool for addressing loss-of-control accidents, including applications to pilot training, accident reconstruction, and advanced control system analysis. The ultimate goal of this effort is to contribute to the reduction of the fatal accident rate due to loss-of-control. Research activities have involved accident analyses, wind tunnel testing, and piloted simulation. Results have shown that significant improvements in simulation fidelity for upset conditions, compared to current training simulations, can be achieved using state-of-the-art wind tunnel testing and aerodynamic modeling methods. This paper provides a summary of research completed to date and includes discussion on key technical results, lessons learned, and future research needs.


AIAA Atmospheric Flight Mechanics Conference and Exhibit | 2008

Practical Application of a Subscale Transport Aircraft for Flight Research in Control Upset and Failure Conditions

Kevin Cunningham; John V. Foster; Eugene A. Morelli; Austin M. Murch

Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.


AIAA Atmospheric Flight Mechanics Conference and Exhibit | 2005

Simulation Study of Flap Effects on a Commercial Transport Airplane in Upset Conditions

Kevin Cunningham; John V. Foster; Gautam H. Shah; Eric C. Stewart; Robin N. Ventura; Robert A. Rivers; James E. Wilborn; William Gato

‡§ As part of NASA’s Aviation Safety and Security Program, a simulation study of a twinjet transport airplane crew training simulation was conducted to address fidelity for upset or loss of control conditions and to study the effect of flap configuration in those regimes. Piloted and desktop simulations were used to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted with various flap configurations and addressed the approach-to-stall, stall, and post-stall flight regimes. The enhanced simulation model showed that flap configuration had a significant effect on the character of departures that occurred during post-stall flight. Preliminary comparisons with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified. This paper presents preliminary results of this simulation study and discusses key issues regarding predicted flight dynamics characteristics during extreme upset and loss-of-control flight conditions with different flap configurations.


AIAA Guidance, Navigation, and Control Conference | 2011

A Piloted Evaluation of Damage Accommodating Flight Control Using a Remotely Piloted Vehicle

Kevin Cunningham; David E. Cox; Daniel G. Murri; Stephen E. Riddick

Toward the goal of reducing the fatal accident rate of large transport airplanes due to loss of control, the NASA Aviation Safety Program has conducted research into flight control technologies that can provide resilient control of airplanes under adverse flight conditions, including damage and failure. As part of the safety program s Integrated Resilient Aircraft Control Project, the NASA Airborne Subscale Transport Aircraft Research system was designed to address the challenges associated with the safe and efficient subscale flight testing of research control laws under adverse flight conditions. This paper presents the results of a series of pilot evaluations of several flight control algorithms used during an offset-to-landing task conducted at altitude. The purpose of this investigation was to assess the ability of various flight control technologies to prevent loss of control as stability and control characteristics were degraded. During the course of 8 research flights, data were recorded while one task was repeatedly executed by a single evaluation pilot. Two generic failures, which degraded stability and control characteristics, were simulated inflight for each of the 9 different flight control laws that were tested. The flight control laws included three different adaptive control methodologies, several linear multivariable designs, a linear robust design, a linear stability augmentation system, and a direct open-loop control mode. Based on pilot Cooper-Harper Ratings obtained for this test, the adaptive flight control laws provided the greatest overall benefit for the stability and control degradation scenarios that were considered. Also, all controllers tested provided a significant improvement in handling qualities over the direct open-loop control mode.


SAE transactions | 2004

Simulation Study of a Commercial Transport Airplane During Stall and Post-Stall Flight

Kevin Cunningham; John V. Foster; Gautam H. Shah; Eric C. Stewart; Robert A. Rivers; James E. Wilborn; William Gato

As part of NASAs Aviation Safety and Security Program, a simulation study of a twin-jet transport aircraft crew training simulation was conducted to address fidelity for upset or loss-of-control flight conditions. Piloted simulation studies were conducted to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted in a flaps-up configuration and covered the approach-to-stall, stall and post-stall flight regimes. Qualitative pilot comments and preliminary comparison with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the significant unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified. This paper presents preliminary results of this simulation study and discusses key issues regarding predicted flight dynamics characteristics during loss-of-control flight conditions.


AIAA Modeling and Simulation Technologies Conference | 2012

Upset Simulation and Training Initiatives for U.S. Navy Commercial Derived Aircraft

Steven Donaldson; James Priest; Kevin Cunningham; John V. Foster

Militarized versions of commercial platforms are growing in popularity due to many logistical benefits in the form of commercial off-the-shelf (COTS) parts, established production methods, and commonality for different certifications. Commercial data and best practices are often leveraged to reduce procurement and engineering development costs. While the developmental and cost reduction benefits are clear, these militarized aircraft are routinely operated in flight at significantly different conditions and in significantly different manners than for routine commercial flight. Therefore they are at a higher risk of flight envelope exceedance. This risk may lead to departure from controlled flight and/or aircraft loss1. Historically, the risk of departure from controlled flight for military aircraft has been mitigated by piloted simulation training and engineering analysis of typical aircraft response. High-agility military aircraft simulation databases are typically developed to include high angles of attack (AoA) and sideslip due to the dynamic nature of their missions and have been developed for many tactical configurations over the previous decades. These aircraft simulations allow for a more thorough understanding of the vehicle flight dynamics characteristics at high AoA and sideslip. In recent years, government sponsored research on transport airplane aerodynamic characteristics at high angles of attack has produced a growing understanding of stall/post-stall behavior. This research along with recent commercial airline training initiatives has resulted in improved understanding of simulator-based training requirements and simulator model fidelity.2-5 In addition, inflight training research over the past decade has produced a database of pilot performance and recurrency metrics6. Innovative solutions to aerodynamically model large commercial aircraft for upset conditions such as high AoA, high sideslip, and ballistic damage, as well as capability to accurately account for scaling factors, is necessary to develop realistic engineering and training simulations. Such simulations should significantly reduce the risk of departure from controlled flight, loss of aircraft, and ease the airworthiness certification process. The characteristics of commercial derivative aircraft are exemplified by the P-8A Multi-mission Maritime Aircraft (MMA) aircraft, and the largest benefits of initial investigation are likely to be yielded from this platform. The database produced would also be utilized by flight dynamics engineers as a means to further develop and investigate vehicle flight characteristics as mission tactics evolve through the years ahead. This paper will describe ongoing efforts by the U.S. Navy to develop a methodology for simulation and training for large commercial-derived transport aircraft at unusual attitudes, typically experienced during an aircraft upset. This methodology will be applied to a representative Navy aircraft (P-8A) and utilized to develop a robust simulation that should accurately represent aircraft response in these extremes. Simulation capabilities would then extend to flight dynamics analysis and simulation, as well as potential training applications. Recent evaluations of integrated academic, ground-based simulation, and in-flight upset training will be described along with important lessons learned, specific to military requirements.


AIAA Guidance, Navigation, and Control Conference | 2012

Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions

David E. Cox; Kevin Cunningham; Thomas L. Jordan

Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.


AIAA Modeling and Simulation Technologies (MST) Conference | 2013

Global Aerodynamic Modeling for Stall/Upset Recovery Training Using Efficient Piloted Flight Test Techniques

Eugene A. Morelli; Kevin Cunningham; Melissa A. Hill

Flight test and modeling techniques were developed for efficiently identifying global aerodynamic models that can be used to accurately simulate stall, upset, and recovery on large transport airplanes. The techniques were developed and validated in a high-fidelity fixed-base flight simulator using a wind-tunnel aerodynamic database, realistic sensor characteristics, and a realistic flight deck representative of a large transport aircraft. Results demonstrated that aerodynamic models for stall, upset, and recovery can be identified rapidly and accurately using relatively simple piloted flight test maneuvers. Stall maneuver predictions and comparisons of identified aerodynamic models with data from the underlying simulation aerodynamic database were used to validate the techniques.


AIAA Modeling and Simulation Technologies Conference | 2010

Simulation Modeling for Off-Nominal Conditions - Where Are We Today?

Gautam H. Shah; John V. Foster; Kevin Cunningham

The modeling of aircraft flight characteris4cs in off-nominal or otherwise adverse conditions has become increasingly important for simulation in the loss-of-control arena. Adverse conditions include environmentally-induced upsets such as wind shear or wake vortex encounters; off-nominal flight conditions, such as stall or departure; on-board systems failures; and structural failures or aircraft damage. Spirited discussions in the research community are taking place as to the fidelity and data requirements for adequate representation of vehicle dynamics under such conditions for a host of research areas, including recovery training, flight controls development, trajectory guidance/planning, and envelope limiting. The increasing need for multiple sources of data (empirical, computational, experimental) for modeling across a larger flight envelope leads to challenges in developing methods of appropriately applying or combining such data, particularly in a dynamic flight environment with a physically and/or aerodynamically asymmetric vehicle. Traditional simplifications and symmetry assumptions in current modeling methodology may no longer be valid. Furthermore, once modeled, challenges abound in the validation of flight dynamics characteristics in adverse flight regimes


AIAA Guidance, Navigation, and Control Conference | 2016

Air STAR Beyond Visual Range UAS Description and Preliminary Test Results

Kevin Cunningham; David E. Cox; John V. Foster; Stephen E. Riddick; Sean A. Laughter

The NASA Airborne Subscale Transport Aircraft Research Unmanned Aerial System projects capabilities were expanded by updating the system design and concept of operations. The new remotely piloted airplane system design was flight tested to assess integrity and operational readiness of the design to perform flight research. The purpose of the system design is to improve aviation safety by providing a capability to validate, in high-risk conditions, technologies to prevent airplane loss of control. Two principal design requirements were to provide a high degree of reliability and that the new design provide a significant increase in test volume (relative to operations using the previous design). The motivation for increased test volume is to improve test efficiency and allow new test capabilities that were not possible with the previous design and concept of operations. Three successful test flights were conducted from runway 4-22 at NASA Goddard Space Flight Centers Wallops Flight Facility.

Collaboration


Dive into the Kevin Cunningham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Cox

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge