Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Dougherty is active.

Publication


Featured researches published by Kevin Dougherty.


Molecular Plant-microbe Interactions | 2012

The Molecular Basis of Host Specialization in Bean Pathovars of Pseudomonas syringae

David A. Baltrus; Marc T. Nishimura; Kevin Dougherty; Surojit Biswas; M. Shahid Mukhtar; Joana G. Vicente; Eric B. Holub; Jeffery L. Dangl

Biotrophic phytopathogens are typically limited to their adapted host range. In recent decades, investigations have teased apart the general molecular basis of intraspecific variation for innate immunity of plants, typically involving receptor proteins that enable perception of pathogen-associated molecular patterns or avirulence elicitors from the pathogen as triggers for defense induction. However, general consensus concerning evolutionary and molecular factors that alter host range across closely related phytopathogen isolates has been more elusive. Here, through genome comparisons and genetic manipulations, we investigate the underlying mechanisms that structure host range across closely related strains of Pseudomonas syringae isolated from different legume hosts. Although type III secretion-independent virulence factors are conserved across these three strains, we find that the presence of two genes encoding type III effectors (hopC1 and hopM1) and the absence of another (avrB2) potentially contribute to host range differences between pathovars glycinea and phaseolicola. These findings reinforce the idea that a complex genetic basis underlies host range evolution in plant pathogens. This complexity is present even in host-microbe interactions featuring relatively little divergence among both hosts and their adapted pathogens.


Plasmid | 2014

Bigger is not always better: transmission and fitness burden of ∼1MB Pseudomonas syringae megaplasmid pMPPla107.

Artur Romanchuk; Corbin D. Jones; Kedar Karkare; Autumn Moore; Brian A. Smith; Chelsea Jones; Kevin Dougherty; David A. Baltrus

BACKGROUND Horizontal gene transfer (HGT) is a widespread process that enables the acquisition of genes and metabolic pathways in single evolutionary steps. Previous reports have described fitness costs of HGT, but have largely focused on the acquisition of relatively small plasmids. We have previously shown that a Pseudomonas syringae pv. lachrymans strain recently acquired a cryptic megaplasmid, pMPPla107. This extrachromosomal element contributes hundreds of new genes to P. syringae and increases total genomic content by approximately 18%. However, this early work did not directly explore transmissibility, stability, or fitness costs associated with acquisition of pMPPla107. RESULTS Here, we show that pMPPla107 is self-transmissible across a variety of diverse pseudomonad strains, on both solid agar and within shaking liquid cultures, with conjugation dependent on a type IV secretion system. To the best of our knowledge, this is the largest self-transmissible megaplasmid known outside of Sinorhizobium. This megaplasmid can be lost from all novel hosts although the rate of loss depends on medium type and genomic background. However, in contrast, pMPPla107 is faithfully maintained within the original parent strain (Pla107) even under direct negative selection during laboratory assays. These results suggest that Pla107 specific stabilizing mutations have occurred either on this strains chromosome or within the megaplasmid. Lastly, we demonstrate that acquisition of pMPPla107 by strains other than Pla107 imparts severe (20%) fitness costs under competitive conditions in vitro. CONCLUSIONS We show that pMPPla107 is capable of transmitting and maintaining itself across multiple Pseudomonas species, rendering it one of the largest conjugative elements discovered to date. The relative stability of pMPPla107, coupled with extensive fitness costs, makes it a tractable model system for investigating evolutionary and genetic mechanisms of megaplasmid maintenance and a unique testing ground to explore evolutionary dynamics after HGT of large secondary elements.


Molecular Plant Pathology | 2014

Incongruence between multi-locus sequence analysis (MLSA) and whole-genome-based phylogenies: Pseudomonas syringae pathovar pisi as a cautionary tale

David A. Baltrus; Kevin Dougherty; Stephen M. Beckstrom-Sternberg; James S. Beckstrom-Sternberg; Jeffrey T. Foster

Previous phylogenies, built using a subset of genomic loci, split Pseudomonas syringae pv. pisi into two well-supported clades and implied convergence in host range for these lineages. The analysis of phenotypic and genotypic data within the context of this phylogenetic relationship implied further convergence at the level of virulence gene loss and acquisition. We generate draft genome assemblies for two additional P. syringae strains, isolated from diseased pea plants, and demonstrate incongruence between phylogenies created from a subset of the data compared with the whole genomes. Our whole-genome analysis demonstrates that strains classified as pv. pisi actually form a coherent monophyletic clade, so that apparent convergence is actually the product of shared ancestry. We use this example to urge caution when making evolutionary inferences across closely related strains of P. syringae.


Molecular Plant-microbe Interactions | 2014

Pseudomonas syringae CC1557: a highly virulent strain with an unusually small type III effector repertoire that includes a novel effector.

Kevin L. Hockett; Marc T. Nishimura; Kevin Dougherty; David A. Baltrus

Both type III effector proteins and nonribosomal peptide toxins play important roles for Pseudomonas syringae pathogenicity in host plants, but whether and how these pathways interact to promote infection remains unclear. Genomic evidence from one clade of P. syringae suggests a tradeoff between the total number of type III effector proteins and presence of syringomycin, syringopeptin, and syringolin A toxins. Here, we report the complete genome sequence from P. syringae CC1557, which contains the lowest number of known type III effectors to date and has also acquired genes similar to sequences encoding syringomycin pathways from other strains. We demonstrate that this strain is pathogenic on Nicotiana benthamiana and that both the type III secretion system and a new type III effector, hopBJ1, contribute to pathogenicity. We further demonstrate that activity of HopBJ1 is dependent on residues structurally similar to the catalytic site of Escherichia coli CNF1 toxin. Taken together, our results provide additional support for a negative correlation between type III effector repertoires and the potential to produce syringomycin-like toxins while also highlighting how genomic synteny and bioinformatics can be used to identify and characterize novel virulence proteins.


PLOS ONE | 2014

Multiple Phenotypic Changes Associated with Large-Scale Horizontal Gene Transfer

Kevin Dougherty; Brian A. Smith; Autumn Moore; Shannon Maitland; Chris Fanger; Rachel Murillo; David A. Baltrus

Horizontal gene transfer often leads to phenotypic changes within recipient organisms independent of any immediate evolutionary benefits. While secondary phenotypic effects of horizontal transfer (i.e., changes in growth rates) have been demonstrated and studied across a variety of systems using relatively small plasmids and phage, little is known about the magnitude or number of such costs after the transfer of larger regions. Here we describe numerous phenotypic changes that occur after a large-scale horizontal transfer event (∼1 Mb megaplasmid) within Pseudomonas stutzeri including sensitization to various stresses as well as changes in bacterial behavior. These results highlight the power of horizontal transfer to shift pleiotropic relationships and cellular networks within bacterial genomes. They also provide an important context for how secondary effects of transfer can bias evolutionary trajectories and interactions between species. Lastly, these results and system provide a foundation to investigate evolutionary consequences in real time as newly acquired regions are ameliorated and integrated into new genomic contexts.


bioRxiv | 2017

Absence of genome reduction in diverse, facultative endohyphal bacteria.

David A. Baltrus; Kevin Dougherty; Kayla R. Arendt; Marcel Huntemann; Alicia Clum; Manoj Pillay; Krishnaveni Palaniappan; Neha Varghese; Natalia Mikhailova; Dimitrios Stamatis; T. B. K. Reddy; Chew Yee Ngan; Chris Daum; Nicole Shapiro; Victor Markowitz; Natalia Ivanova; Nikos C. Kyrpides; Tanja Woyke; A. Elizabeth Arnold

Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, and generated nearly complete genome sequences for all. Unlike the genomes of largely obligate EHB, the genomes of these facultative EHB resembled those of closely related strains isolated from environmental sources. Although all analysed genomes encoded structures that could be used to interact with eukaryotic hosts, pathways previously implicated in maintenance and establishment of EHB symbiosis were not universally present across all strains. Independent isolation of two nearly identical pairs of strains from different classes of fungi, coupled with recent experimental evidence, suggests horizontal transfer of EHB across endophytic hosts. Given the potential for EHB to influence fungal phenotypes, these genomes could shed light on the mechanisms of plant growth promotion or stress mitigation by fungal endophytes during the symbiotic phase, as well as degradation of plant material during the saprotrophic phase. As such, these findings contribute to the illumination of a new dimension of functional biodiversity in fungi.


Applied and Environmental Microbiology | 2008

Transposable Element Loads in a Bacterial Symbiont of Weevils Are Extremely Variable

Kevin Dougherty; Gordon R. Plague

ABSTRACT Not only are transposable elements profuse in the bacterial endosymbiont of maize weevils, but we found that their quantities also vary ∼10-fold among individual weevils. Because multicopy elements can facilitate homologous recombination, this insertion sequence (IS) load variability suggests that these essentially asexual bacteria may exhibit substantial intraspecific genomic variation.


Genome Announcements | 2014

Complete Genome Sequence of the Highly Transformable Pseudomonas stutzeri Strain 28a24.

Brian A. Smith; Kevin Dougherty; David A. Baltrus

ABSTRACT Here, we report the complete genome sequence for an isolate of Pseudomonas stutzeri that is highly competent for natural transformation. This sequence enables insights into the genetic basis of natural transformation rate variations and provides an additional data point for genomic comparisons across a ubiquitous and highly diverse bacterial species.


Genetica | 2011

Relaxed natural selection alone does not permit transposable element expansion within 4,000 generations in Escherichia coli

Gordon R. Plague; Kevin Dougherty; Krystal S. Boodram; Samantha E. Boustani; Huansheng Cao; Sarah R. Manning; Camille C. McNally

Insertion sequences (ISs) are transposable genetic elements in bacterial genomes. IS elements are common among bacteria but are generally rare within free-living species, probably because of the negative fitness effects they have on their hosts. Conversely, ISs frequently proliferate in intracellular symbionts and pathogens that recently transitioned from a free-living lifestyle. IS elements can profoundly influence the genomic evolution of their bacterial hosts, although it is unknown why they often expand in intracellular bacteria. We designed a laboratory evolution experiment with Escherichia coli K-12 to test the hypotheses that IS elements often expand in intracellular bacteria because of relaxed natural selection due to (1) their generally small effective population sizes (Ne) and thus enhanced genetic drift, and (2) their nutrient rich environment, which makes many biosynthetic genes unnecessary and thus selectively neutral territory for IS insertion. We propagated 12 populations under four experimental conditions: large Ne versus small Ne, and nutrient rich medium versus minimal medium. We found that relaxed selection over 4,000 generations was not sufficient to permit IS element expansion in any experimental population, thus leading us to hypothesize that IS expansion in intracellular symbionts may often be spurred by enhanced transposition rates, possibly due to environmental stress, coupled with relaxed natural selection.


mSphere | 2018

Evolutionary plasticity of AmrZ regulation in Pseudomonas

David A. Baltrus; Kevin Dougherty; Beatriz Diaz; Rachel Murillo

Microbes often display finely tuned patterns of gene regulation across different environments, with major regulatory changes controlled by a small group of “master” regulators within each cell. AmrZ is a master regulator of gene expression across pseudomonads and can be either a positive or negative regulator for a variety of pathways depending on the strain and genomic context. Here, we demonstrate that the phenotypic outcomes of regulation of swimming motility by AmrZ have switched at least twice independently in pseudomonads, so that AmrZ promotes increased swimming motility in P. stutzeri and P. syringae but represses this phenotype in Pseudomonas fluorescens and Pseudomonas aeruginosa. Since examples of switches in regulatory mode are relatively rare, further investigation into the mechanisms underlying shifts in regulator function for AmrZ could provide unique insights into the evolution of bacterial regulatory proteins. ABSTRACT amrZ encodes a master regulator protein conserved across pseudomonads, which can be either a positive or negative regulator of swimming motility depending on the species examined. To better understand plasticity in the regulatory function of AmrZ, we characterized the mode of regulation for this protein for two different motility-related phenotypes in Pseudomonas stutzeri. As in Pseudomonas syringae, AmrZ functions as a positive regulator of swimming motility within P. stutzeri, which suggests that the functions of this protein with regard to swimming motility have switched at least twice across pseudomonads. Shifts in mode of regulation cannot be explained by changes in AmrZ sequence alone. We further show that AmrZ acts as a positive regulator of colony spreading within this strain and that this regulation is at least partially independent of swimming motility. Closer investigation of mechanistic shifts in dual-function regulators like AmrZ could provide unique insights into how transcriptional pathways are rewired between closely related species. IMPORTANCE Microbes often display finely tuned patterns of gene regulation across different environments, with major regulatory changes controlled by a small group of “master” regulators within each cell. AmrZ is a master regulator of gene expression across pseudomonads and can be either a positive or negative regulator for a variety of pathways depending on the strain and genomic context. Here, we demonstrate that the phenotypic outcomes of regulation of swimming motility by AmrZ have switched at least twice independently in pseudomonads, so that AmrZ promotes increased swimming motility in P. stutzeri and P. syringae but represses this phenotype in Pseudomonas fluorescens and Pseudomonas aeruginosa. Since examples of switches in regulatory mode are relatively rare, further investigation into the mechanisms underlying shifts in regulator function for AmrZ could provide unique insights into the evolution of bacterial regulatory proteins.

Collaboration


Dive into the Kevin Dougherty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc T. Nishimura

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Daum

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge