Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin E. Bennet is active.

Publication


Featured researches published by Kevin E. Bennet.


Neuroscience Letters | 2010

High frequency stimulation of the subthalamic nucleus evokes striatal dopamine release in a large animal model of human DBS neurosurgery

Young Min Shon; Kendall H. Lee; Stephan J. Goerss; In Yong Kim; Christopher J. Kimble; Jamie J. Van Gompel; Kevin E. Bennet; Su Youne Chang

Subthalamic nucleus deep brain stimulation (STN DBS) ameliorates motor symptoms of Parkinsons disease, but the precise mechanism is still unknown. Here, using a large animal (pig) model of human STN DBS neurosurgery, we utilized fast-scan cyclic voltammetry in combination with a carbon-fiber microelectrode (CFM) implanted into the striatum to monitor dopamine release evoked by electrical stimulation at a human DBS electrode (Medtronic 3389) that was stereotactically implanted into the STN using MRI and electrophysiological guidance. STN electrical stimulation elicited a stimulus time-locked increase in striatal dopamine release that was both stimulus intensity- and frequency-dependent. Intensity-dependent (1-7V) increases in evoked dopamine release exhibited a sigmoidal pattern attaining a plateau between 5 and 7V of stimulation, while frequency-dependent dopamine release exhibited a linear increase from 60 to 120Hz and attained a plateau thereafter (120-240Hz). Unlike previous rodent models of STN DBS, optimal dopamine release in the striatum of the pig was obtained with stimulation frequencies that fell well within the therapeutically effective frequency range of human DBS (120-180Hz). These results highlight the critical importance of utilizing a large animal model that more closely represents implanted DBS electrode configurations and human neuroanatomy to study neurotransmission evoked by STN DBS. Taken together, these results support a dopamine neuronal activation hypothesis suggesting that STN DBS evokes striatal dopamine release by stimulation of nigrostriatal dopaminergic neurons.


American Journal of Medical Quality | 2008

Innovation in health care: a primer.

Prathibha Varkey; April E. Horne; Kevin E. Bennet

As organizations strive for ways to control health care spending, address the growing needs of an aging population, and respond satisfactorily to a more informed and demanding consumer base, the opportunities for innovation have increased exponentially. By means of this article, the authors describe the basic concepts of purposeful innovation, and compare and contrast it to quality improvement. The authors also provide an overview of the terminology and types of innovation, describe the innovation life cycle, and discuss diffusion and commercialization of innovations. This article provides a primer on innovation for quality improvement practitioners and physician leaders who play a key role in creating innovation and environments for innovations to flourish. (Am J Med Qual 2008;23:382-388)


Journal of Neurosurgery | 2009

Wireless instantaneous neurotransmitter concentration system-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring - laboratory investigation

Filippo Agnesi; Susannah J. Tye; Jonathan M. Bledsoe; Christoph J. Griessenauer; Christopher J. Kimble; Gary C. Sieck; Kevin E. Bennet; Paul A. Garris; Kendall H. Lee

OBJECT In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. METHODS The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig. RESULTS The WINCS, which is designed in compliance with FDA-recognized consensus standards for medical electrical device safety, successfully measured dopamine, glutamate, and adenosine, both in vitro and in vivo. The WINCS detected striatal dopamine release at the implanted CFM during DBS of the MFB. The DBS-evoked adenosine release in the rat thalamus and MCS-evoked glutamate release in the pig cortex were also successfully measured. Overall, in vitro and in vivo testing demonstrated signals comparable to a commercial hardwired electrochemical system for FPA. CONCLUSIONS By incorporating FPA, the chemical repertoire of WINCS-measurable neurotransmitters is expanded to include glutamate and other nonelectroactive species for which the evolving field of enzyme-linked biosensors exists. Because many neurotransmitters are not electrochemically active, FPA in combination with enzyme-linked microelectrodes represents a powerful intraoperative tool for rapid and selective neurochemical sampling in important anatomical targets during functional neurosurgery.


Analyst | 2011

Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry

Jessica E. Koehne; Michael P. Marsh; Adwoa Boakye; Brandon Douglas; In Yong Kim; Su Youne Chang; Dong Pyo Jang; Kevin E. Bennet; Christopher J. Kimble; Russell J. Andrews; M. Meyyappan; Kendall H. Lee

A carbon nanofiber (CNF) electrode array was integrated with the Wireless Instantaneous Neurotransmitter Concentration Sensor System (WINCS) for the detection of dopamine using fast scan cyclic voltammetry (FSCV). Dopamine detection performance by CNF arrays was comparable to that of traditional carbon fiber microelectrodes (CFMs), demonstrating that CNF arrays can be utilized as an alternative carbon electrode for neurochemical monitoring.


Journal of Neurosurgery | 2009

Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry: Technical note

Jonathan M. Bledsoe; Christopher J. Kimble; Daniel P. Covey; Filippo Agnesi; Pedram Mohseni; Sidney V. Whitlock; David M. Johnson; April E. Horne; Kevin E. Bennet; Kendall H. Lee; Paul A. Garris

OBJECT Emerging evidence supports the hypothesis that modulation of specific central neuronal systems contributes to the clinical efficacy of deep brain stimulation (DBS) and motor cortex stimulation (MCS). Real-time monitoring of the neurochemical output of targeted regions may therefore advance functional neurosurgery by, among other goals, providing a strategy for investigation of mechanisms, identification of new candidate neurotransmitters, and chemically guided placement of the stimulating electrode. The authors report the development of a device called the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for intraoperative neurochemical monitoring during functional neurosurgery. This device supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially and chemically resolved neurotransmitter measurements in the brain. METHODS The FSCV study consisted of a triangle wave scanned between -0.4 and 1 V at a rate of 300 V/second and applied at 10 Hz. All voltages were compared with an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single carbon fiber (r = 2.5 mum) into a glass capillary and pulling the capillary to a microscopic tip by using a pipette puller. The exposed carbon fiber (that is, the sensing region) extended beyond the glass insulation by approximately 100 microm. The neurotransmitter dopamine was selected as the analyte for most trials. Proof-of-principle tests included in vitro flow injection and noise analysis, and in vivo measurements in urethane-anesthetized rats by monitoring dopamine release in the striatum following high-frequency electrical stimulation of the medial forebrain bundle. Direct comparisons were made to a conventional hardwired system. RESULTS The WINCS, designed in compliance with FDA-recognized consensus standards for medical electrical device safety, consisted of 4 modules: 1) front-end analog circuit for FSCV (that is, current-to-voltage transducer); 2) Bluetooth transceiver; 3) microprocessor; and 4) direct-current battery. A Windows-XP laptop computer running custom software and equipped with a Universal Serial Bus-connected Bluetooth transceiver served as the base station. Computer software directed wireless data acquisition at 100 kilosamples/second and remote control of FSCV operation and adjustable waveform parameters. The WINCS provided reliable, high-fidelity measurements of dopamine and other neurochemicals such as serotonin, norepinephrine, and ascorbic acid by using FSCV at CFM and by flow injection analysis. In rats, the WINCS detected subsecond striatal dopamine release at the implanted sensor during high-frequency stimulation of ascending dopaminergic fibers. Overall, in vitro and in vivo testing demonstrated comparable signals to a conventional hardwired electrochemical system for FSCV. Importantly, the WINCS reduced susceptibility to electromagnetic noise typically found in an operating room setting. CONCLUSIONS Taken together, these results demonstrate that the WINCS is well suited for intraoperative neurochemical monitoring. It is anticipated that neurotransmitter measurements at an implanted chemical sensor will prove useful for advancing functional neurosurgery.


Frontiers in Neuroscience | 2014

A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies

Peter J. Grahn; Grant W. Mallory; Obaid U. Khurram; B. Michael Berry; Jan T. Hachmann; Allan J. Bieber; Kevin E. Bennet; Hoon Ki Min; Su Youne Chang; Kendall H. Lee; J. L. Lujan

Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a “smart” neuroprosthetic system for treatment of neurologic and psychiatric disorders.


NeuroImage | 2012

Deep brain stimulation induces BOLD activation in motor and non-motor networks: an fMRI comparison study of STN and EN/GPi DBS in large animals.

Hoon Ki Min; Sun Chul Hwang; Michael P. Marsh; Inyong Kim; Emily Knight; Bryan L. Striemer; Joel P. Felmlee; Kirk M. Welker; Su Youne Chang; Kevin E. Bennet; Kendall H. Lee

The combination of deep brain stimulation (DBS) and functional MRI (fMRI) is a powerful means of tracing brain circuitry and testing the modulatory effects of electrical stimulation on a neuronal network in vivo. The goal of this study was to trace DBS-induced global neuronal network activation in a large animal model by monitoring the blood oxygenation level-dependent (BOLD) response on fMRI. We conducted DBS in normal anesthetized pigs, targeting the subthalamic nucleus (STN) (n=7) and the entopeduncular nucleus (EN), the non-primate analog of the primate globus pallidus interna (n=4). Using a normalized functional activation map for group analysis and the application of general linear modeling across subjects, we found that both STN and EN/GPi DBS significantly increased BOLD activation in the ipsilateral sensorimotor network (FDR<0.001). In addition, we found differential, target-specific, non-motor network effects. In each group the activated brain areas showed a distinctive correlation pattern forming a group of network connections. Results suggest that the scope of DBS extends beyond an ablation-like effect and that it may have modulatory effects not only on circuits that facilitate motor function but also on those involved in higher cognitive and emotional processing. Taken together, our results show that the swine model for DBS fMRI, which conforms to human implanted DBS electrode configurations and human neuroanatomy, may be a useful platform for translational studies investigating the global neuromodulatory effects of DBS.


Mayo Clinic proceedings | 2012

Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation.

Su Youne Chang; Inyong Kim; Michael P. Marsh; Dong Pyo Jang; Sun Chul Hwang; Jamie J. Van Gompel; Stephan J. Goerss; Christopher J. Kimble; Kevin E. Bennet; Paul A. Garris; Kendall H. Lee

Essential tremor is often markedly reduced during deep brain stimulation simply by implanting the stimulating electrode before activating neurostimulation. Referred to as the microthalamotomy effect, the mechanisms of this unexpected consequence are thought to be related to microlesioning targeted brain tissue, that is, a microscopic version of tissue ablation in thalamotomy. An alternate possibility is that implanting the electrode induces immediate neurochemical release. Herein, we report the experiment performing with real-time fast-scan cyclic voltammetry to quantify neurotransmitter concentrations in human subjects with essential tremor during deep brain stimulation. The results show that the microthalamotomy effect is accompanied by local neurochemical changes, including adenosine release.


Journal of Neurosurgery | 2010

Comonitoring of adenosine and dopamine using the Wireless Instantaneous Neurotransmitter Concentration System: proof of principle

Young-Min Shon; Su-Youne Chang; Susannah J. Tye; Christopher J. Kimble; Kevin E. Bennet; Kendall H. Lee

OBJECT The authors of previous studies have demonstrated that local adenosine efflux may contribute to the therapeutic mechanism of action of thalamic deep brain stimulation (DBS) for essential tremor. Real-time monitoring of the neurochemical output of DBS-targeted regions may thus advance functional neurosurgical procedures by identifying candidate neurotransmitters and neuromodulators involved in the physiological effects of DBS. This would in turn permit the development of a method of chemically guided placement of DBS electrodes in vivo. Designed in compliance with FDA-recognized standards for medical electrical device safety, the authors report on the utility of the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for real-time comonitoring of electrical stimulation-evoked adenosine and dopamine efflux in vivo, utilizing fast-scan cyclic voltammetry (FSCV) at a polyacrylonitrile-based (T-650) carbon fiber microelectrode (CFM). METHODS The WINCS was used for FSCV, which consisted of a triangle wave scanned between -0.4 and +1.5 V at a rate of 400 V/second and applied at 10 Hz. All voltages applied to the CFM were with respect to an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single T-650 carbon fiber (r = 2.5 microm) into a glass capillary and pulling to a microscopic tip using a pipette puller. The exposed carbon fiber (the sensing region) extended beyond the glass insulation by approximately 50 microm. Proof of principle tests included in vitro measurements of adenosine and dopamine, as well as in vivo measurements in urethane-anesthetized rats by monitoring adenosine and dopamine efflux in the dorsomedial caudate putamen evoked by high-frequency electrical stimulation of the ventral tegmental area and substantia nigra. RESULTS The WINCS provided reliable, high-fidelity measurements of adenosine efflux. Peak oxidative currents appeared at +1.5 V and at +1.0 V for adenosine, separate from the peak oxidative current at +0.6 V for dopamine. The WINCS detected subsecond adenosine and dopamine efflux in the caudate putamen at an implanted CFM during high-frequency stimulation of the ventral tegmental area and substantia nigra. Both in vitro and in vivo testing demonstrated that WINCS can detect adenosine in the presence of other easily oxidizable neurochemicals such as dopamine comparable to the detection abilities of a conventional hardwired electrochemical system for FSCV. CONCLUSIONS Altogether, these results demonstrate that WINCS is well suited for wireless monitoring of high-frequency stimulation-evoked changes in brain extracellular concentrations of adenosine. Clinical applications of selective adenosine measurements may prove important to the future development of DBS technology.


Neuromodulation | 2009

Evolution of Deep Brain Stimulation: Human Electrometer and Smart Devices Supporting the Next Generation of Therapy

Kendall H. Lee; Paul A. Garris; Pedram Mohseni; April E. Horne; Kevin E. Bennet; Filippo Agnesi; Jonathan M. Bledsoe; Deranda B. Lester; Christopher J. Kimble; Hoon Ki Min; Young Bo Kim; Zang-Hee Cho

Deep brain stimulation (DBS) provides therapeutic benefit for several neuropathologies, including Parkinson disease (PD), epilepsy, chronic pain, and depression. Despite well‐established clinical efficacy, the mechanism of DBS remains poorly understood. In this review, we begin by summarizing the current understanding of the DBS mechanism. Using this knowledge as a framework, we then explore a specific hypothesis regarding DBS of the subthalamic nucleus (STN) for the treatment of PD. This hypothesis states that therapeutic benefit is provided, at least in part, by activation of surviving nigrostriatal dopaminergic neurons, subsequent striatal dopamine release, and resumption of striatal target cell control by dopamine. While highly controversial, we present preliminary data that are consistent with specific predications testing this hypothesis. We additionally propose that developing new technologies (e.g., human electrometer and closed‐loop smart devices) for monitoring dopaminergic neurotransmission during STN DBS will further advance this treatment approach.

Collaboration


Dive into the Kevin E. Bennet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felicia Manciu

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Ciubuc

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Friedman

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge