Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Su Youne Chang is active.

Publication


Featured researches published by Su Youne Chang.


Neuroscience Letters | 2010

High frequency stimulation of the subthalamic nucleus evokes striatal dopamine release in a large animal model of human DBS neurosurgery

Young Min Shon; Kendall H. Lee; Stephan J. Goerss; In Yong Kim; Christopher J. Kimble; Jamie J. Van Gompel; Kevin E. Bennet; Su Youne Chang

Subthalamic nucleus deep brain stimulation (STN DBS) ameliorates motor symptoms of Parkinsons disease, but the precise mechanism is still unknown. Here, using a large animal (pig) model of human STN DBS neurosurgery, we utilized fast-scan cyclic voltammetry in combination with a carbon-fiber microelectrode (CFM) implanted into the striatum to monitor dopamine release evoked by electrical stimulation at a human DBS electrode (Medtronic 3389) that was stereotactically implanted into the STN using MRI and electrophysiological guidance. STN electrical stimulation elicited a stimulus time-locked increase in striatal dopamine release that was both stimulus intensity- and frequency-dependent. Intensity-dependent (1-7V) increases in evoked dopamine release exhibited a sigmoidal pattern attaining a plateau between 5 and 7V of stimulation, while frequency-dependent dopamine release exhibited a linear increase from 60 to 120Hz and attained a plateau thereafter (120-240Hz). Unlike previous rodent models of STN DBS, optimal dopamine release in the striatum of the pig was obtained with stimulation frequencies that fell well within the therapeutically effective frequency range of human DBS (120-180Hz). These results highlight the critical importance of utilizing a large animal model that more closely represents implanted DBS electrode configurations and human neuroanatomy to study neurotransmission evoked by STN DBS. Taken together, these results support a dopamine neuronal activation hypothesis suggesting that STN DBS evokes striatal dopamine release by stimulation of nigrostriatal dopaminergic neurons.


Neurosurgery | 2010

Deep Brain Stimulation Results in Local Glutamate and Adenosine Release: Investigation into the Role of Astrocytes

Vivianne L. Tawfik; Su Youne Chang; Frederick L. Hitti; David W. Roberts; James C. Leiter; Svetlana Jovanovic; Kendall H. Lee

BACKGROUNDSeveral neurological disorders are treated with deep brain stimulation; however, the mechanism underlying its ability to abolish oscillatory phenomena associated with diseases as diverse as Parkinsons disease and epilepsy remain largely unknown. OBJECTIVETo investigate the role of specific neurotransmitters in deep brain stimulation and determine the role of non-neuronal cells in its mechanism of action. METHODSWe used the ferret thalamic slice preparation in vitro, which exhibits spontaneous spindle oscillations, to determine the effect of high-frequency stimulation on neurotransmitter release. We then performed experiments using an in vitro astrocyte culture to investigate the role of glial transmitter release in high-frequency stimulation-mediated abolishment of spindle oscillations. RESULTSIn this series of experiments, we demonstrated that glutamate and adenosine release in ferret slices was able to abolish spontaneous spindle oscillations. The glutamate release was still evoked in the presence of the Na+ channel blocker tetrodotoxin, but was eliminated with the vesicular H+-ATPase inhibitor bafilomycin and the calcium chelator 2-bis(2-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid tetrakis acetoxymethyl ester. Furthermore, electrical stimulation of purified primary astrocytic cultures was able to evoke intracellular calcium transients and glutamate release, and bath application of 2-bis (2-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid tetrakis acetoxymethyl ester inhibited glutamate release in this setting. CONCLUSIONVesicular astrocytic neurotransmitter release may be an important mechanism by which deep brain stimulation is able to achieve clinical benefits.


Analyst | 2011

Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry

Jessica E. Koehne; Michael P. Marsh; Adwoa Boakye; Brandon Douglas; In Yong Kim; Su Youne Chang; Dong Pyo Jang; Kevin E. Bennet; Christopher J. Kimble; Russell J. Andrews; M. Meyyappan; Kendall H. Lee

A carbon nanofiber (CNF) electrode array was integrated with the Wireless Instantaneous Neurotransmitter Concentration Sensor System (WINCS) for the detection of dopamine using fast scan cyclic voltammetry (FSCV). Dopamine detection performance by CNF arrays was comparable to that of traditional carbon fiber microelectrodes (CFMs), demonstrating that CNF arrays can be utilized as an alternative carbon electrode for neurochemical monitoring.


Frontiers in Neuroscience | 2014

A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies

Peter J. Grahn; Grant W. Mallory; Obaid U. Khurram; B. Michael Berry; Jan T. Hachmann; Allan J. Bieber; Kevin E. Bennet; Hoon Ki Min; Su Youne Chang; Kendall H. Lee; J. L. Lujan

Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a “smart” neuroprosthetic system for treatment of neurologic and psychiatric disorders.


NeuroImage | 2012

Deep brain stimulation induces BOLD activation in motor and non-motor networks: an fMRI comparison study of STN and EN/GPi DBS in large animals.

Hoon Ki Min; Sun Chul Hwang; Michael P. Marsh; Inyong Kim; Emily Knight; Bryan L. Striemer; Joel P. Felmlee; Kirk M. Welker; Su Youne Chang; Kevin E. Bennet; Kendall H. Lee

The combination of deep brain stimulation (DBS) and functional MRI (fMRI) is a powerful means of tracing brain circuitry and testing the modulatory effects of electrical stimulation on a neuronal network in vivo. The goal of this study was to trace DBS-induced global neuronal network activation in a large animal model by monitoring the blood oxygenation level-dependent (BOLD) response on fMRI. We conducted DBS in normal anesthetized pigs, targeting the subthalamic nucleus (STN) (n=7) and the entopeduncular nucleus (EN), the non-primate analog of the primate globus pallidus interna (n=4). Using a normalized functional activation map for group analysis and the application of general linear modeling across subjects, we found that both STN and EN/GPi DBS significantly increased BOLD activation in the ipsilateral sensorimotor network (FDR<0.001). In addition, we found differential, target-specific, non-motor network effects. In each group the activated brain areas showed a distinctive correlation pattern forming a group of network connections. Results suggest that the scope of DBS extends beyond an ablation-like effect and that it may have modulatory effects not only on circuits that facilitate motor function but also on those involved in higher cognitive and emotional processing. Taken together, our results show that the swine model for DBS fMRI, which conforms to human implanted DBS electrode configurations and human neuroanatomy, may be a useful platform for translational studies investigating the global neuromodulatory effects of DBS.


Mayo Clinic proceedings | 2012

Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation.

Su Youne Chang; Inyong Kim; Michael P. Marsh; Dong Pyo Jang; Sun Chul Hwang; Jamie J. Van Gompel; Stephan J. Goerss; Christopher J. Kimble; Kevin E. Bennet; Paul A. Garris; Kendall H. Lee

Essential tremor is often markedly reduced during deep brain stimulation simply by implanting the stimulating electrode before activating neurostimulation. Referred to as the microthalamotomy effect, the mechanisms of this unexpected consequence are thought to be related to microlesioning targeted brain tissue, that is, a microscopic version of tissue ablation in thalamotomy. An alternate possibility is that implanting the electrode induces immediate neurochemical release. Herein, we report the experiment performing with real-time fast-scan cyclic voltammetry to quantify neurotransmitter concentrations in human subjects with essential tremor during deep brain stimulation. The results show that the microthalamotomy effect is accompanied by local neurochemical changes, including adenosine release.


Journal of Clinical Neurology | 2010

Deep Brain Stimulation: Technology at the Cutting Edge

Rahul S. Shah; Su Youne Chang; Hoon Ki Min; Zang-Hee Cho; Kendall H. Lee

Deep brain stimulation (DBS) surgery has been performed in over 75,000 people worldwide, and has been shown to be an effective treatment for Parkinsons disease, tremor, dystonia, epilepsy, depression, Tourettes syndrome, and obsessive compulsive disorder. We review current and emerging evidence for the role of DBS in the management of a range of neurological and psychiatric conditions, and discuss the technical and practical aspects of performing DBS surgery. In the future, evolution of DBS technology may depend on several key areas, including better scientific understanding of its underlying mechanism of action, advances in high-spatial resolution imaging and development of novel electrophysiological and neurotransmitter microsensor systems. Such developments could form the basis of an intelligent closed-loop DBS system with feedback-guided neuromodulation to optimize both electrode placement and therapeutic efficacy.


Epilepsia | 2014

Increased cortical extracellular adenosine correlates with seizure termination.

Jamie J. Van Gompel; Mark R. Bower; Gregory A. Worrell; Matt Stead; Su Youne Chang; Stephan J. Goerss; Inyong Kim; Kevin E. Bennet; Fredric B. Meyer; W. Richard Marsh; Kendall H. Lee

Seizures are currently defined by their electrographic features. However, neuronal networks are intrinsically dependent on neurotransmitters of which little is known regarding their periictal dynamics. Evidence supports adenosine as having a prominent role in seizure termination, as its administration can terminate and reduce seizures in animal models. Furthermore, microdialysis studies in humans suggest that adenosine is elevated periictally, but the relationship to the seizure is obscured by its temporal measurement limitations. Because electrochemical techniques can provide vastly superior temporal resolution, we test the hypothesis that extracellular adenosine concentrations rise during seizure termination in an animal model and humans using electrochemistry.


international conference of the ieee engineering in medicine and biology society | 2009

Microthalamotomy effect during deep brain stimulation: Potential involvement of adenosine and glutamate efflux

Su Youne Chang; Young Min Shon; Filippo Agnesi; Kendall H. Lee

Deep brain stimulation (DBS) of the thalamus is widely used in humans to treat essential tremor and tremor dominant Parkinson’s disease. After DBS lead implantation, tremor is often reduced even without electrical stimulation. Often called “microthalamotomy” effect, the exact mechanism is unknown, although it is presumed to be due to micro lesioning. Here, we tested whether microthalamotomy effect may, in fact, be mediated via release of neurotransmitters adenosine and glutamate, using fast scan cyclic voltammetry (FSCV) and amperometry, respectively. Implantation of microelectrodes into the ventrolateral (VL) thalamus of the rat resulted in transient rise in adenosine and glutamate level from mechanical stimulation. Similarly, high frequency stimulation (100 - 130 Hz) of the VL thalamus also resulted in adenosine and glutamate release. These results suggest that glutamate and adenosine release may be an important and unappreciated mechanism whereby mechanical stimulation via electrode implantation procedure may achieve the microthalamotomy effect.


Brain Stimulation | 2014

Subthalamic Nucleus Deep Brain Stimulation Induces Motor Network BOLD Activation: Use of a High Precision MRI Guided Stereotactic System for Nonhuman Primates

Hoon Ki Min; Erika K. Ross; Kendall H. Lee; Kendall D. Dennis; Seong Rok Han; Ju Ho Jeong; Michael P. Marsh; Bryan L. Striemer; Joel P. Felmlee; J. Luis Lujan; Steve Goerss; Penelope S. Duffy; Su Youne Chang; Kevin E. Bennet

BACKGROUND Functional magnetic resonance imaging (fMRI) is a powerful method for identifying in vivo network activation evoked by deep brain stimulation (DBS). OBJECTIVE Identify the global neural circuitry effect of subthalamic nucleus (STN) DBS in nonhuman primates (NHP). METHOD An in-house developed MR image-guided stereotactic targeting system delivered a mini-DBS stimulating electrode, and blood oxygenation level-dependent (BOLD) activation during STN DBS in healthy NHP was measured by combining fMRI with a normalized functional activation map and general linear modeling. RESULTS STN DBS significantly increased BOLD activation in the sensorimotor cortex, supplementary motor area, caudate nucleus, pedunculopontine nucleus, cingulate, insular cortex, and cerebellum (FDR < 0.001). CONCLUSION Our results demonstrate that STN DBS evokes neural network grouping within the motor network and the basal ganglia. Taken together, these data highlight the importance and specificity of neural circuitry activation patterns and functional connectivity.

Collaboration


Dive into the Su Youne Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge